
TECHNICAL PAPER

August 2024 v1.0

Technologies & Innovation
and Defence & Space

WORKING GROUP 6 ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/activities/sria-and-cyber-security-technologies/
https://ecs-org.eu/activities/sria-and-cyber-security-technologies/
https://ecs-org.eu/activities/sria-and-cyber-security-technologies/
https://ecs-org.eu/activities/sria-and-cyber-security-technologies/
https://ecs-org.eu/activities/sria-and-cyber-security-technologies/
https://ecs-org.eu/

The use of the information contained in this document is
at your own risk, and no relationship is created between
ECSO and any person accessing or otherwise using the
document or any part of it. ECSO is not liable for actions of
any nature arising from any use of the document or part
of it. Neither ECSO nor any person acting on its behalf is
responsible for the use that might be made of the
information contained in this publication.

Third-party sources are quoted as appropriate. ECSO is not
responsible for the content of the external sources,
including external websites referenced in this publication.

DISCLAIMER

CPYRIGHT NOTICE

© European Cyber Security Organisation (ECSO), 2024
Reproduction is authorised provided the source is acknowledged.

EMPOWERING
EUROPEAN
CYBERSECURITY
COMMUNITIES

iwww.ecs-org.eu

ABOUT

The European Cyber Security Organisation (ECSO) is a not-for-profit membership-based
organisation established in 2016. Uniting more than 320 stakeholders, ECSO develops a
competitive European cybersecurity ecosystem that provides trusted cybersecurity
solutions, advances Europe’s technological independence, and unifies its cybersecurity
posture. ECSO also leads the European project ECCO, supporting activities needed to
develop, promote, coordinate and organise the European-level Cybersecurity Competence
Community.

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

https://ecs-org.eu/
https://ecs-org.eu/
https://ecs-org.eu/
https://ecs-org.eu/
https://ecs-org.eu/
https://ecs-org.eu/
https://ecs-org.eu/
https://ecs-org.eu/
https://ecs-org.eu/
https://ecs-org.eu/
https://ecs-org.eu/
https://ecs-org.eu/
https://ecs-org.eu/
https://ecs-org.eu/
https://ecs-org.eu/

This paper stems from the consideration that software is highly spread in nowadays
societies. Despite this significant level of adoption, how software is made remains a less
known aspect. In particular, the complexity of software development has only increased in
the recent years, with an evolution in methodologies and processes used, the tools, the
languages, and the speed. Not to mention very recent potential developments brought by
using large language models in writing code (however such implications will not be the focus
of this work).

Even though developers can strive to build secure code and follow best practices, it is
evident from this analysis that the way software is built today implies a heavy reliance on
third parties’ contributions, as well as the usage of externally provided tools and
components. If this allows modern software to exist, such complex ramifications of
dependencies creates some cybersecurity challenges.

This paper discusses the lifecycle development of software and provides an analysis of how
software is commonly developed today, what tools and technologies are typically used and
what risks exist. The main objective is to identify the most relevant cybersecurity challenges,
and what are the implications of how the software is developed and consumed. A specific
focus is on the software supply chain due to the increase of the attack surface. In essence,
compromising upstream components of the software supply chain will mean that malicious
activity can happen in environments that are distant from the those who develop the
software and even more distant from those who sell the final product or service. One key
element stemming from the analysis of the software lifecycle is the importance of software
supply chain as a critical aspect of European sovereignty and autonomy.

The ultimate goal is to provide recommendations with clear references to frameworks on
software supply chain, and good practices for development, maintainance and risk
exposure reduction.

This paper also propose some areas where further innovation is needed in order to increase
the overall security posture of the current software development ecosystem, keeping an
eye on automation, open-source software development and techniques to reduce the
available attack surface.

ii

EXECUTIVE SUMMARY

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

CONTENTS

iii

Executive Summary
1. Introduction
 1.1. Problem statement
 1.2. Related work
 1.3. EU Policy considerations related
 to software supply chain
2. How we do develop software today
 2.1. Today’s Software and Software Development
 2.2. Supply Chain Risks
3. Tools and technologies we use
 3.1. Languages and software productions platforms
 3.2. Computing infrastructures
 3.3. Libraries / Applications
 3.4. Associated software platforms
4. Recommendations
Acknowledgements

... ii
... 1

.. 2
.. 4

... 6
... 7

.. 8
... 11

... 15
... 16

... 21
.. 24

.. 25
.. 28

... 37

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

INTRODUCTION

1.

E
C

SO
 T

ec
h

n
ic

al
 P

ap
er

 —
 S

of
tw

ar
e

Su
p

p
ly

 C
h

ai
n

 S
ec

u
ri

ty

2

¹ The Linux Foundation indicates that “it has been estimated that Free and Open Source Software (FOSS) constitutes of any
given piece of modern software solutions.” Source: https://www.linuxfoundation.org/blog/blog/a-summary-of-census-ii-
open-source-software-application-libraries-the-world-depends-on#:~:text=It%20has%20been%20estimated%20that,and%2
0non%2Dtech%20companies%20alike. Last Accessed on 3rd April 2024

The world of software development has changed extremely in the past few years. In a short
time, software is included in pretty much any product or service of our daily lives. In addition,
the landscape of software development has changed dramatically, in terms of
methodologies, processes, platforms, tools, languages, speed, complexity, to name a few.
Thus, the notion of software supply chain, i.e., how software is embedded into these
products and services and how 3rd party software can be integrated in (software) vendor’s
offers, has become a major challenge for companies and administrations.

A major change that could be observed over the past years is that developers now rely on
externally provided tools and components. This dependence is extreme, up to a point where
software developed by an organisation (and the associated control of source code) can be
around 10%¹ of the full software product. This includes development platforms and tools
(gcc, eclipse), configuration and build tools, libraries and associated packages, underlying
operating systems, and more. The trend of open-source, while generally benefitting
organisations, has accelerated this dimension as it allows developers to avoid rewriting
existing code and to focus on the core functionality of their software.

This softwarisation trend is also opening a whole new attack surface. In this model, the
attacker does not interact with the product or service directly to carry out its attack. Rather,
s/he inserts itself in the software supply chain, compromising some component in an
environment distant from the product or service developer, and even further away from the
final product owner or service operator. The threat is real, and we have already seen
instances of it with extreme prejudice for the victims.

This document responds to the fact that the software supply chain is a critical aspect of
European sovereignty and autonomy, and a crucial support for cyber-secure and cyber-safe
products and services. The objective is to analyse multiple aspects of software supply chain
security. The scope of this document includes:

1.1. Problem Statement

A threat model related to the
essential aspects of such software
development and its related supply
chain, including agile development
environments (which heavily rely
on the availability of tools and
libraries). It also considers the
complexity of software building and
deployment toolchains (including
reliance on third-party software
components and frameworks).

An introduction to modern
software development and
deployment processes, tools and
techniques, setting the scene for
attack surface analysis and risk
identification.

1 2

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://www.linuxfoundation.org/blog/blog/a-summary-of-census-ii-open-source-software-application-libraries-the-world-depends-on#:~:text=It%20has%20been%20estimated%20that,and%20non%2Dtech%20companies%20alike
https://www.linuxfoundation.org/blog/blog/a-summary-of-census-ii-open-source-software-application-libraries-the-world-depends-on#:~:text=It%20has%20been%20estimated%20that,and%20non%2Dtech%20companies%20alike
https://www.linuxfoundation.org/blog/blog/a-summary-of-census-ii-open-source-software-application-libraries-the-world-depends-on#:~:text=It%20has%20been%20estimated%20that,and%20non%2Dtech%20companies%20alike
https://ecs-org.eu/
https://ecs-org.eu/

3

The methods and tools related to
risk assessment in this domain, also
addressing the risk related to
embed third party components,
and to understand quantitatively
this risk and the possibilities to
remediate it.

3 Recommendations on approaches,
best practices, and innovation
needs that help to address and
mitigate supply chain related risks.

Many of today’s software systems and services expose a highly dynamic behaviour. They
integrate dynamic libraries at runtime, which provenance and semantics cannot be
anticipated until they are actually executed. Since our investigation focuses on development
environments, processes, and tools, this paper does not discuss dynamic libraries unless
they contribute to the dynamic deployment of the software component.

Furthermore, the risks that result from the specific functionalities of the software consumed
are not in the scope, e.g. consumption of AI models. This topic is addressed in the ECSO
technical papers focused on the specific technologies, such as the one on Artificial
Intelligence.

The target audience of this document includes both software development organisations
consuming 3rd party and open-source software throughout the development lifecycles of
their products, as well as end-users who consume via its user interface a software product
and service built on 3rd party and open-source software and services. This clarification is
needed to compile the overview about possible controls/safeguards. However, the
recommendations for these two target groups differ following their different levels of
control; this pwill be indicated in the recommendations section.

4

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

Following a number of supply-chain related incidents in the past two years, the topic of
software supply chain threats and risks has raised increased attention. An ENISA study
provides an overview and an analysis of 24 supply chain related attacks that occurred
between January 2020 and July 2021². However, this report strictly focuses on software
components provided by 3rd party commercial vendors, excluding open-source. While there
are good arguments for their scoping, we think that open-source software should be
considered because of their relevance for today’s software development.

One of the results of the SPARTA project is a taxonomy of open-source supply chain attack
vectors, which supports developers in becoming aware of open-source risks and work
towards mitigation strategies³. The taxonomy is available as an open-source service⁴.

Open-source and supply chain risks have also been considered when designing criteria for
the cybersecurity certification of cloud services. The German C5 criteria catalogue⁵ as well
as the upcoming European Cloud Security certification scheme include related
requirements. In its special publication 800-160⁶, NIST has collected security principles and
best practices that can also help to identify and mitigate supply chain risks. NIST SP 800-160
has been complemented by the NIST SP 800-161⁷ , which define dedicated “Cybersecurity
Supply Chain Risk Management Practices for Systems and Organizations”.

Open-source and other organisations have recognized the importance of securing open-
source software and open-source based supply chains in the development of secure
software and services. They came up with efforts to provide practices for a secure software
lifecycle, as well as frameworks focusing on the secure consumption of open-source
components within the software supply chain.

The Enduring Security Framework (a public-private cross-sectional working group) released
“Securing the Software Supply Chain for Developers⁸ to provide actionable guidance to
developers to secure the software supply chain. It describes the security criteria, how to
manage security during the software development process, what actions to take in writing
secure code, how to verify third-party components, how to harden the build environment,
and finally how suppliers should securely deliver the software produced to customers.

4

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

³ P. Ladisa, H. Plate, M. Martinez and O. Barais, "SoK: Taxonomy of Attacks on Open-Source Software Supply Chains," in
2023 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 2023 pp. 1509-1526. doi:
10.1109/SP46215.2023.10179304
⁴ Risk Explorer for Software Supply Chains. Available at https://github.com/SAP/risk-explorer-for-software-supply-chains
[Last access on 29 January 2024]
⁵ BSI - Federal Office for Information Security. Cloud Computing Compliance Criteria Catalogue – C5:2020
⁶ NIST. Engineering Trustworthy Secure Systems. SP 800-160 Vol. 1 Rev. 1. November 2022.

⁷ NIST. Cybersecurity Supply Chain Risk Management Practices for Systems and Organizations. SP 800-161 Rev. 1. May 2022

⁸ The Enduring Security Framework. Securing the Software Supply Chain: Recommended Practices for Managing
Open-Source Software and Software Bill of Materials. December 2023

1.2. Related work

² ENISA. Threat Landscape for Supply Chain Attacks. July 2021

www.ecs-org.eu

https://github.com/SAP/risk-explorer-for-software-supply-chains
https://ecs-org.eu/
https://ecs-org.eu/

The Open Source Security Foundation (OpenSSF) has published a
number of guides on Open-Source software and its evaluation, e.g.
the Concise Guide for Evaluating Open Source Software⁹. In
particular, In February 2022, the OSSF has launched the Alpha-
Omega project¹⁰, where both developer support for critical open-
source projects will be offered and at least 10.000 widely deployed
OSS projects will be analysed. They also introduced SLSA (Supply
Chain Levels for Software Artefacts)¹¹, a checklist of standards and
controls to prevent tampering, improve integrity, and secure
packages and infrastructure in projects, businesses or enterprises.
It defines four levels of assurance, from simple provenance
information via a documented, automated build process, to high
confidence and trust via peer-review of source code changes with
hermetic, reproducible builds.

The OWASP Software Component Verification Standard¹² aims at
establishing a framework for identifying activities, controls, and
best practices, which can help in identifying and reducing risk in a
software supply chain. Such controls are grouped in six control
families: inventory, Software Bill Of Materials (SBOM), build
environment, package management, SCA, and software pedigree
and provenance.

The Microsoft Open Source Software (OSS) Secure Supply Chain
(SSC) Framework combines requirements and tools to reduce risks
associated with the consumption of open-source software. It is
based on three core concepts: control all consumed open-source
software, use of maturity model to help in prioritising the
requirements to implement and secure the software supply chain
at scale.

Another relevant publication is the ENISA guideline for securing the
Internet of Things¹³, which puts forward useful recommendations
related to 3rd party software including open-source. This ECSO
study complement it with a set of aligned recommendations.

5

¹⁰ OpenSSF. The Alpha-Omega project. https://openssf.org/community/alpha-omega/ [Last access on 29 January 2024]
¹¹ SLSA (Supply-chain Levels for Software Artifacts). https://slsa.dev/ [Last access on 29 January 2024]

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

¹³ ENISA. Guidelines for Securing the Internet of Things. November 2020

¹² OWASP Software Component Verification Standard. https://owasp.org/www-project-software-component-verification-
standard/ [Last access on 29 January 2024]

⁹ OpenSSF. Concise Guide for Evaluating Open Source Software. https://best.openssf.org/Concise-Guide-for-Evaluating-
Open-Source-Software [Last access on 29 January 2024]

www.ecs-org.eu

https://openssf.org/community/alpha-omega/
https://slsa.dev/
https://owasp.org/www-project-software-component-verification-standard/
https://owasp.org/www-project-software-component-verification-standard/
https://best.openssf.org/Concise-Guide-for-Evaluating-Open-Source-Software
https://best.openssf.org/Concise-Guide-for-Evaluating-Open-Source-Software
https://ecs-org.eu/
https://ecs-org.eu/

6

The EU has not overlooked that the most sophisticated cyber-attacks in recent years target
software and hardware components used by many companies downstream in the supply
chain. One of the most relevant pieces of legislation with policy implication for the Software
supply chain is the Cyber Resilience Act. This bill is reaching its finish line in 2024, after being
proposed by the European Commission at the end of 2022.

The objective of the CRA is to establish a minimum level of cybersecurity for all digital
devices (both software and hardware) sold in the EU internal market. One of the aims of the
CRA is indeed strengthening the security of the whole supply chain by facilitating the secure
development of products with digital elements and their components. More precisely, it
does so by defining cybersecurity rules for placing products on the market; requirements for
the design, development, and production of products; requirements for the vulnerability
handling process; and rules on market surveillance and enforcement.

The CRA will complement other European cybersecurity regulations, by providing a
horizontal level playing field of cybersecurity criteria and interplaying other relevant
legislations.

It is worth highlighting the critical requirements concerning the software supply chain
mentioned in the regulation: organisations will have to draft a Software Bill of Material
(SBOM), open-source software dependencies will have to be tracked, and consequently
vulnerabilities throughout the supply chain will have to be addressed.

1.3. EU Policy considerations
related to software supply chain

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

HOW WE
DO DEVELOP

SOFTWARE
TODAY

2.

E
C

SO
 T

ec
h

n
ic

al
 P

ap
er

 —
 S

of
tw

ar
e

Su
p

p
ly

 C
h

ai
n

 S
ec

u
ri

ty

8

Having set the context for the current analysis, this section focuses on how software is
commonly developed today. This presentation is crucial in order to grasp the potential risks
concerning the software supply chain. This section concludes by discussing some frameworks
that could be useful to mitigate such risks.

2.1. Today’s Software and Software Development

Today, providers of software products and services heavily reuse 3rd party and open-source
solutions to develop their offering. Often, solution-specific application logic only amounts to
10% or less of an overall application code base, while the greater share is comprised of 3rd
party and open-source software like libraries and frameworks. Such dependencies can exist
both at development time, in which case they are bundled and distributed together with the
application code, as well as at runtime, in which case an application interacts with internal or
external services during its execution.

A typical technology stack also comprises runtime environments, which are executed –
depending on the deployment model – with the help of cloud technologies or directly on
physical systems like end-user computers or smart phones. Again, especially in case of cloud
solutions, those environments heavily rely on 3rd party and open-source.

Figure 1 High-level Technology Stack

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

9

At high-level, all those components are developed in a comparable fashion (see Figure 1).
The source code is kept and managed in versioning control systems and pulled by
(automated) build pipelines to perform functional and non-functional tests. Provided all
quality assurance tests pass, the software is packaged for easy consumption, and made
available on distribution platforms like software marketplaces and package repositories or
directly deployed into production environments. Compared to traditional development
processes, the time needed to integrate, test, and even deploy code changes into production
environments, has been significantly decreased through Continuous Integration (CI) and
Continuous Delivery (CD) processes.

Figure 2 Continuous Integration and Continuous Delivery Process

Figure 2 illustrates common stakeholders and systems involved in the development, CI/CD
processes and distribution. The members of development projects, e.g. DevOps engineers or
software architects, have privileged access to project resources like the source code
management or build system.

Figure 3 Continuous Integration and Continuous Delivery Process

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

Figure 3 illustrates the actors and the management of an open-source project. The open-
source projects can additionally receive contributions from potentially unknown project-
external contributors. The downstream consumers typically download pre-built packages
from software marketplaces or package repositories, but they can also consume and inspect
the source code in case of open-source.

Build systems, due to the CI/CD processes running thereon, have an important role regarding
security. The leaked credentials for a SolarWinds build system, for example, were at the
origin of the SolarWinds attack, and permitted the attacker to plant backdoors in the Orion
product. Moreover, build systems commonly depend on and execute numerous 3rd party
and open-source components, especially runtime dependencies of the software being built.
The so called package managers automate the download and installation of such
dependencies, which greatly facilitated the adoption of open source during software
development. But 3rd party and open source is also used on other systems depicted in Figure
1, be it integrated development environments (IDE) used by developers or the source code
management system.

In summary, the software supply chain of a given technology stack comprises all the systems,
technologies, people, and processes involved in creating, building, and distributing its
constituting elements. Those are inherently distributed and managed by different and partly
unknown parties, including commercial and non-commercial organisations as well as
individuals.

In this context, the secure software lifecycle processes are proactive approaches employed
by one party to build security into its respective software product, treating the ’disease’ of
poorly designed, insecure software at the source, rather than ’applying a band aid’ to stop
the symptoms through a reactive penetrate and patch approach. These processes work
software security deeply into the full product development process and incorporate people
and technology to tackle and prevent software security issues.

There are prescriptive secure software lifecycle processes that explicitly recommend
software practices such as Microsoft Security Development Lifecycle (SDL)¹⁴, Touchpoints¹⁵ or
SAFECode¹⁶. The practices of these processes are integrated and cover a broad spectrum of
the lifecycle phases, from software requirements to release/deployment and software
maintenance.

These secure software lifecycle models can be integrated with any software development
model and are domain agnostic such as Agile Software Development, DevOps, Mobile, Cloud
Computing, Internet of Things, Road Vehicles and eCommerce.

10

¹⁶ The Software Assurance Forum for Excellence in Code (SAFECode). https://safecode.org/ [Last access on 29 January 2024]

¹⁴ Microsoft. The Security Development Lifecycle (SDL) https://www.microsoft.com/en-us/securityengineering/sdl
[Last access on 29 January 2024]

¹⁵ G. McGraw, Software Security: Building Security In. Addison-Wesley Professional, 2006.

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://safecode.org/
https://www.microsoft.com/en-us/securityengineering/sdl
https://ecs-org.eu/
https://ecs-org.eu/

11

On the other hand, organisations may wish to or be required to assess the maturity of their
secure development lifecycle. Some assessment approaches are Software Assurance
Maturity Model (SAMM)¹⁷, Building Security In Maturity Model (BSIMM)¹⁸ and Common
Criteria (CC)¹⁹.

The successful adoption of these best practices involves organisational and cultural changes
in software development companies. The organisation, starting from the CEO, must support
the extra training, resources, and steps needed to use a secure software development
lifecycle. Additionally, every software developer must uphold his or her responsibility to take
part in such improvement process.

¹⁹ The Common Criteria. https://commoncriteriaportal.org/index.cfm

¹⁸ Building Security In Maturity Model (BSIMM). https://www.synopsys.com/software-integrity/software-security-services/
bsimm-maturity-model.html [Last access on 29 January 2024]

Because of this growing concern for supply chain risk, institutions such as the National
Institute of Standards and Technology has published management practices specifically
focused on this area of concern and continues to refine these practices as experience in
handling supply chain risk increases.

As mentioned, the final software product or service is an integration of various elements and
each element carries the marks of the people, processes, and technologies used in its
creation, and in many cases ongoing refinement and support. The term "ICT supply chain" or
“Software Supply Chain” is used to describe those acquisition and outsourcing linkages.

Software products thereby inherit cybersecurity risks from upstream 3d party and open-
source components, and the criticality of supply chain risk management is increasing because
the volume of such upstream components is growing exponentially. Altogether, the
significant number of upstream components part of a given technology stack and used for its
development, considering all stakeholders and infrastructure, results in a significant attack
surface. Additional challenges stand from the fact that organisation’s supply chains often
span multiple countries and are dynamic multi-tiered and complex, making it difficult for an
organisation to view all layers of its supply chain.

It is important to recognise that vulnerabilities can come through the supplier, through the
product, through the software that is used to develop a product, such as language libraries,
and integrated development environments, as well as through the mechanisms used to
transfer the product from one organization to another. Supply chain vulnerabilities may be
found in the systems/components within the software development lifecycle (i.e., being
developed and integrated), the development and operational environment directly impacting
the software development lifecycle and even the delivery environment that transports ICT
systems and components (logically and physically).

2.2. Supply Chain Risks

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

¹⁷ OWASP. Software Assurance Maturity Model (SAMM). https://owasp.org/www-project-samm/
[Last access on 29 January 2024]

www.ecs-org.eu

https://commoncriteriaportal.org/index.cfm
https://www.synopsys.com/software-integrity/software-security-services/bsimm-maturity-model.html
https://www.synopsys.com/software-integrity/software-security-services/bsimm-maturity-model.html
https://owasp.org/www-project-samm/
https://ecs-org.eu/
https://ecs-org.eu/

12

The Supply Chain Risk Management (SCRM) is a term to describe the implementation of the
processes and practices needed to address this growing organizational concern. In order to
be successful, an organization must integrate these practices into all of its ongoing
acquisition activities.

The SCRM depends on the acquisition strategy, which essentially drives the structure of the
supply chain. Acquisition strategy defines such supply-chain-related actions as which
capabilities will be built internally or externally, how many vendors will be involved in the
program, how the work will be allocated among those vendors and other related tasks. All of
this impact who will be expected to address the various activities related to the software
across the lifecycle, and its software assurance.

Therefore, it would be nice to consider different acquisition strategy that impacts in the
practices, processes, and tools that the acquisition organisation should follow. For example,
when talking about vendor supply software components we distinguish the following cases:

The contractor defines the require-
ments. Then, the contractor will
also be determining where compo-
nents will be sourced, what will be
the acquisition strategy, and the
actual acquirer will have only limi-
ted ability to influence these deci-
sions based on the specific contract
restrictions that they incorporate.

1

The acquirer actually looks at fit-
for-use solution, because the pro-
duct already exists (COTS) and it
is evaluated based on how the
software component appropriately
addresses a specific need. The
acquirer will have really limited in-
sight into the acquisition and the
relationships with the subcontrac-
tors who will be building pieces of
those products.

3

The acquirer defines the require-
ments and establishes criteria for
the selection and management of
suppliers. Specific clauses in the
contract that restrict the kinds of
suppliers and define how trust rela-
tionships can be set up.

2

Downstream consumers have limited control about and limited visibility into the security
posture of upstream components. For instance, whether and which security best-practices
are applied during the software development lifecycle, and whether this is documented. In
some cases this depends on the discretion of the respective development organisation or
developer.

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

13

However, some good practices exist to help vendors meet and maintain rigorous security
level, e.g. the Network Equipment Security Assurance Scheme (NESAS) - Security from GSMA.
Still, some industries are more mature than other in applying those. Downstream consumers
have limited control about and limited visibility into the security posture of upstream
components. For instance, whether and which security best-practices are applied during the
software development lifecycle, and whether this is documented. In some cases this depends
on the discretion of the respective development organisation or developer.

This lack of visibility and traceability of ICT supply chains can lead to security risks impacting
the confidentiality, integrity, or availability of information or information systems and reflect
the potential adverse impacts to organisational operations (including mission, functions,
image, or reputation), organisational assets, individuals, other organisations, and countries.

Those risks apply to all downstream consumers, direct or indirect, including the providers of
commercial software and services as well as their customers. This is further aggravated by
the high degree of automation with which upstream components are updated, downloaded,
and installed, with little or no human intervention.

Some examples of software supply chain risks are insertion of counterfeits, unauthorised
production, tampering, theft of software, insertion of malicious software and hardware (e.g.,
GPS tracking devices), the presence of known vulnerabilities and poor software development
practices in the supply chain.

While consumers could theoretically vet each and every component by themselves, this is
virtually impossible due to the large number of dependencies and versions used throughout
the development. Furthermore, existing standards and metrics used for assessing the
security maturity of open-source projects are not yet widely adopted.

After the assessment is completed, even if a consumer concluded to reject a given
component due to security issues, this may be difficult for transitive dependencies, i.e.,
dependencies of dependencies, because this could require modifying the code of the direct
dependant.

Finally, the security risk is also aggravated by the fact that many open-source projects only
receive little funding and contributions, which makes it difficult to securely run their projects
and renders them potentially more susceptible to social engineering attacks.

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

14

Enduring Security
Framework “Securing
the Software Supply
Chain for Developers”

2.2.1. Existing Frameworks for a Secure
SW Supply Chain

Microsoft Open Source
Software (OSS) Secure
Supply Chain (SSC)

The framework “Securing the Software Supply Chain for
Developers” targets developers and lists principles to secure the
entire software development lifecycle (SDLC). It considers threats
to the development of secure code, to the verification of third-
party components, to the hardening of the build system, and to
the delivering of code and provides recommended mitigations.

Compared to the framework “Securing the Software Supply Chain
for Developers”, the Microsoft Open Source Software (OSS) Secure
Supply Chain (SSC) Framework only focuses on the secure
consumption of open-source software, but provides a more
detailed guidance in this context. Microsoft OSS SSC defines 8
practices (e.g., scan and update third-party components) and a list
of associated operational requirements (e.g., scan OSS for
malware, perform security reviews of OSS). It also comes with a
maturity model that organizes the requirements into 4 different
levels and lists tools that can support fulfilling the requirements.

OWASP Software
Component Verification
Standard (SCV)

OpenSSF “Supply chain
Levels for Software
Artifacts (SLSA)”

Similarly to OSS SSC, the OWASP Software Component Verification
Standard (SCV) provides 6 families of controls (e.g., inventory,
pedigree and provenance) and 3 levels of verification requiring an
increasing number of requirements for higher assurance.
However, it applies to software components in general and thus
the requirements are not specific for OSS consumed within the
supply chain like in the case of the OSS SSC framework.

Defining maturity levels is the main goal of the “Supply chain
Levels for Software Artifacts (SLSA)” framework. Compared to
Microsoft OSS SSC and OWASP SCV, SLSA has a narrower scope as
it focuses on integrity, thus ensuring that the consumed code has
not been tampered.

Taxonomy for open-
source software supply
chain attacks

The “taxonomy for open-source software supply chain attacks”
created within the SPARTA project complements such efforts as it
provides the most complete taxonomy of attacks whereas the
frameworks above focus on safeguards by providing
recommendations. The taxonomy takes the perspective of the
attacker. Similar to what the MITRE ATT&CK framework does for
attacks to infrastructures, it helps in describing how attackers can
exploit the software supply chain to spread malwares. Having a
complete taxonomy is key for establishing whether the identified
recommendations cover the known attack vectors. By providing a
base of knowledge related to attacks, it helps in designing and
researching novel countermeasures.

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

TOOLS AND
TECHNOLOGIES

WE USE

3.

E
C

SO
 T

ec
h

n
ic

al
 P

ap
er

 —
 S

of
tw

ar
e

Su
p

p
ly

 C
h

ai
n

 S
ec

u
ri

ty

16

This section deeps dive on the common tools and technologies that developers deal with on
a daily basis. In particular, the analysis focuses on the role and the importance of languages
and of production platforms, trying to demystify their complexity as well as explaining their
relevance in secure software environments.

Furthermore, the section discusses the main components of a computing infrastructure,
linking those with their related libraries and applications. Finally, the popular software
platforms, namely servers and databases, are reviewed in order to close the loop of this
overview and providing a comprehensive understanding of how a modern software
development ecosystem looks like in the real world.

3.1. Languages & Software Production Platforms

Ken Thompson published a paper in 1984 called “Reflections on Trusting Trust”²⁰. The
ultimate point of the demonstration was that if a component of a system is implicitly trusted
(compiler in his example), then compromising it would mean that the entire system can no
longer be trusted. Is the vulnerability described in the paper relevant for today’s software
compilers? Trying to answer the question is just missing Ken Thompson’s message: we
cannot ignore the eventuality of compromised trusted system. He reminded that such an
attack was practical to implement instead of just theoretical, which finds particular echo and
resonates with more recent state-of-the-art cyber strategies like Zero-Trust Approach.

Furthermore, we should never lose sight of the fact that software flaws are rather originated
by unintentional coding mistakes than malicious acts. Recently, four researchers in MIT’s
Computer Science and Artificial Intelligence Laboratory²¹ studied a dozen common C/C++
compilers to see how they dealt with undefined code (such as dividing by zero, null pointer
dereferencing or buffer overflows). Unlike other code, compiler writers are free to deal with
undefined behaviour however they wish. Researchers found out that, over time, compilers
are becoming more aggressive in how they deal with such code, more often simply removing
it, even at default or low levels of optimization. Since C/C++ is fairly liberal about allowing
undefined behaviour, it is more susceptible to subtle bugs and security threats as a result of
unstable code.

3.1.1. Compilers

²⁰ K. Thompson. “Reflections on Trusting Trust”. Communications of the ACM – August 1984 – Volume 27 – Number 8 –
Turing Award Lecture. doi: 10.1145/358198.358210

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

²¹ X. Wang, N. Zeldovich, M. F. Kaashoek, and A. Solar-Lezama. “Towards optimization-safe systems: analyzing the impact of
undefined behavior”. In the Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP '13). Pag. 260–275. doi:
10.1145/2517349.2522728

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

17

But let’s take a step back and remind what a compiler actually does and why it is an
important piece in the context of secure software supply chain. Most people involved in the
tech industry have sadly only a vague idea of how compilers transform human-readable code
into the machine language actually used by computers. Here are some enlightenments:

1 The compiler sequentially goes through
each source code file in the program
and does two important tasks: first, it
checks the lines of co-de to make sure
they follow the rules of the language.

If they don’t, the compiler will give an
error (and the corres-ponding line
number) to help pinpoint what needs
fixing. The compilation process will also
be aborted until the error is fixed.
Second, it translates the source code
into a machine language file called an
object file.

After the compiler creates one or more object files, then another
program called the linker kicks in. The job of the linker is to take all the
object files generated by the compiler and combine them into a single
executable program, linking library files (a library file is a collection of
precompiled code that has been “packaged up” for reuse in other
programs.

And if needed, recent examples of vulnerabilities²² emphasised how
central was the role of libraries management in the secure software
supply chain). Finally, the linker makes sure all cross-file dependencies
are resolved properly. For example, if something is defined in one file,
and then used in another file, the linker connects the two together. If the
linker is unable to connect a reference to something with its definition, a
linker error will be generated, and the linking process will abort.

2

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

²² Early 2022, an open-source developer deliberately altered computer libraries, "faker.js" and "colors.js", on which he was
working. Beyond a joke or a malicious act, this strike 2.0 points out to the precariousness of the open-source world.
Another example is the critical Log4shell vulnerability affecting a broadly used library developed in open source by very few
volunteers.

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

18

There is no need to further detail compiler and linker’s activities to understand their primary
role in the security chain of creating a software. The bright side of it is that, properly
configured, compiler allows the detection of programming errors or dangerous use of the
development language. Most of the compilers embed hardening features capable of
significantly improving the security of the software developed. They offer different levels of
warnings to inform the developer of the use of risky components or the presence of
programming errors.

On the other hand, it is true that the level enabled by default should usually be increased,
which requires to understand the compilation options used. For the same version of
language, some default behaviours may vary from one compiler to another, or some
warnings issued during compilation are different depending on compiler’s version.

It is therefore essential to know exactly the compiler used, its version, but also all the options
activated and why. Compilers should not be considered as a black-box bullet-proof trusted
component but rather turned into a valuable tool and ally for better software supply chain
security.

If compiler is one of the core instruments used during software development lifecycle, the
complete toolbox employed nowadays by developing teams is much broader.

This section addresses the tools entailed in code creation interface, namely the Integrated
Development Environment (IDE) and also the platforms used for code storage (repository
and version control). The tools supporting other activities such as build, and testing phases
are covered in next sections.

Nowadays, developers are responsible for more than working on software features, they
have to focus in the meantime on maintainability, scalability, reliability, and security. And
that is why security functionalities (like static code analysis) are more and more inserted in
developer’s “to-do-almost everything-tool”, the IDE. Most of IDEs today alert developers
about potential issues such as a section of code not being reachable, a method never being
called or SQL injection vulnerability. It enables to test code as early as possible in the chain,
even before the build, based on concepts such as continuous integration (see Section 2.1).

Then, apart from IDEs, another crucial aspect when considering the software development, is
ensure proper version and configuration management with an associated repository.
Dedicated platforms and tools integrate components to enable track software changes
during development and are designed for coordinating work among programmers. But as
developers increasingly rely on these solutions to manage and store their source code, it is
essential also to consider the importance of their security.

3.1.2. Software Development Platforms

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

19

For instance, in the case of Web development, there are publicly available tools that enable
complete downloads of the repository content if the repository directory is accessible. The
repository metadata and content can give an attacker helpful information for further attacks.
The repository not only potentially reveals the web page source code, but passwords, secret
tokens or confidential customer data could also be exposed. Besides these, the attacker may
also use this information to discover even more vulnerabilities which may escalate to more
dangerous attacks, like database takeovers (using the hardcoded credentials, Time of Check
and Time of Use (TOCTOU), and even Remote Code Execution, etc.

“Verification” and “Validation” are two widely and commonly used terms. According to the
Capability Maturity Model Integration (CMMI)²³ for software engineering both terms are
defined as follow: verification confirms that work products properly reflect the requirements
specified for them. In other words, verification ensures that “you built it right.”; validation
confirms that the product, as provided, will fulfill its intended use. In other words, validation
ensures that “you built the right thing.” Even if these activities have obvious differences, in
the context of this document, we will refer to them as one single activity since many tools
can be used in both activities. Both activities will be called “software validation”.

Two major families exist when we want to test software:

3.1.3. Software Validation Platforms

Dynamic analysis Static analysis

Refers to the analysis of running
code. This is commonly referred
as testing.

Refers to the analysis of code
at fixed points durting its
development.

On one hand we have the dynamic test which evaluates applications from the outside, as
they execute. It finds accidental vulnerabilities looking at all the actual behaviours of a
system, not just the expected behaviours. On the other hand, there is the static analysis, with
its whitebox visibility, which is certainly the more thorough approach and may also prove to
be more cost-efficient with the ability to detect bugs at an early phase of the software
development life cycle. Performing code review such as static code analysis also provides the
opportunity during software development to realize other important activities when it comes
to software evaluation.

²³ CMMI Product Team, The. CMMI for Software Engineering, Version 1.1, Continuous Representation (CMMI-SW, V1.1,
CMU/SEI-2002-TR-028. https://doi.org/10.1184/R1/6572396.v1

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://doi.org/10.1184/R1/6572396.v1
https://ecs-org.eu/
https://ecs-org.eu/

20

Software security analysis (validation) is a broader activity than only finding vulnerabilities. It
plays an essential role in controlling Clean Code principles (Security, Maintainable, Readable
and Reliable, Testable, Efficient and Portable). Moreover, one of the functions of a platform
facilitating the development of combined software is the verification of the traceability of
the code, which is a crucial component in the context of Secure Software Supply Chain.
Traceability tends to answer the following questions: Who developed these specific lines of
code? For which functionality are these lines developed? Who tested them?

A software validation platform also plays a role when we consider external partnership
(commercial or open source) helping to identify outdated external component and thus
avoiding their usage. Even if it is not the role of software validation platforms to create
formal, machine-readable inventory of software components and dependencies, they can
well contribute to the verification of SBOM (Software Bill of Material) accuracy.

3.1.4. Security Analysis Platforms

After having discussed Software validation tools, this section focuses more on the specific
activities of finding vulnerabilities, or security analysis, in particular static and dynamic
analysis are discussed and the available tools.

First, source code analysis tools or Static Application Security Testing (SAST) Tools are used to
find security flaws, for instance buffer overflows or SQL injection flaws. Such tools are useful
to highlight problematic code and to help fix it easily. However, efficient tools that target
security flaws based on secure coding rules (CERT, CWE) are rare. Indeed, a lot of static tools
are only linter or extended-grepper to find common vulnerabilities and based only on
syntactic search on code.

Moreover, static analysis tools are in general not efficient in finding certain flaws based on
weak cryptography and authentication or access control issues. Also, these tools are not easy
to use, and they pose some challenges when it comes to dealing with a high number of false
positives at the end of the analysis. As previously mentioned, another challenge of SASTs
consists in the possibility of accessing in full all the necessary code to compile (libraries,
compilation options...). Therefore, especially when open-source libraries are embedded in
the development process, SCA (software compositional analysis) tools are a necessary step.
SCA are tools which allows the identification of open-source libraries used in a software and
to list, for each identified library, the set of known vulnerabilities for the associated version.

On the other hand, Dynamic code analysis or dynamic application security testing (DAST) are
tools for identifying both compile-time and run-time vulnerabilities, such as configuration
errors that appear only in a realistic execution environment. DAST tools use known
vulnerabilities or malicious data to test software, like a fuzzer would do. Typical malicious
inputs are, for example, long input strings and unexpected input data. The idea behind a
fuzzer is to “bombard” the software with this kind of malicious data to cause a crash or
obtain useful information to exploit a vulnerability.

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

21

Overall, DAST analysis are easy to automate. They operate on the running software and can
detect a wide range of vulnerabilities with a low effort, but they require full availability of the
application. DAST tools are typically used during the testing phase of software development
and fit well with continuous integration and delivery workflows.

Nowadays developers use a varied and complex mix of
tools to perform their work. Among those, compilers,
IDE platform, DAST and SAST tools are the most used
ones. Overall, such tools shouldn’t be seen as black
boxes as their correct usage and configuration can
make the difference in the security posture of a
software system.

Failure to know the functioning of these tools, their
purpose, their strength and weaknesses, will prevent
organisation from choosing the right ones, from
configuring them correctly and it will be making these
technologies as an extension of the attack surface
rather than an allied in defence.

KEY
TAKEAWAY
/ASSOCIATED
RISK

Operating systems are the cornerstone on which each software runs. Due to the complexity
of hardware architectures and interfaces, operating systems have become increasingly
complex over the years. It is an extremely hard market, both commercially and technically,
where only very few mainstream operating systems exist (Windows, Linux, MacOS) but
where operating system-like platforms in embedded systems are flourishing. Software
systems cannot run without an operating system.

As a result, the technical skills to develop and maintain operating systems are also in short
supply, and they tend to be attracted to major companies. The first risk is thus to lose the
capability to use and maintain these operating systems.

An associated risk is that there are very few operating system developers in Europe. Major
operating systems are owned by US-based companies (Microsoft for Windows, Apple for IOS
and MacOS, Google for Android) or supported by US-based organisations (The Linux
Foundation for Linux). The only potential alternative is the China-manufactured smartphone
ecosystem, where the US ban on technologies has forced Chinese companies to develop
alternative operating systems for their platforms.

3.2.1. Operating Systems
3.2 Computing Infrastructures

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

22

Europe has not had this necessity to develop its own
operating system technologies, apart possibly for niche
markets (e.g. RIOT), and as a result is at risk of losing access
to operating systems or to the scientific and technical
capabilities to develop such technologies. As a companion
to the Chips act, Europe should ensure a continuous
capability to source operating systems, either by ensuring a
reliable open source supply chain, or by developing the
next generation of these technologies in Europe

One of the key aspects of server and cloud environments
are all the management and orchestration software that is
required for them to work properly. Network operating
systems such as ONOS, Ryu, OpenDayLight or Floodlight are
one of the key technologies to ensure the proper
management of software-defined networks. Orchestrators
and cloud management software such as Kubernetes,
Proxmox or Openstack are critical to the operation of
datacentres. Function as a Service (FaaS) runtimes such as
OpenWhisk or OpenFaaS are critical to the proper delivery
of computing functions to customers.

These software-based technologies are crucial to the
development of future networks, clouds, and servers. They
are often delivered under open-source licences but are
strongly supported by private entities that are both
technology users, technology providers and developers,
and are acting as standard-setting organisations in an
informal manner. They are also highly attractive
organisations for talented individuals and are creating a
brain drain that reduces access to these environments.

The key risks are thus to either loose access to the
technology (if the source code is removed, the repository
destroyed or altered, etc), or loose the capability to
understand, deploy and efficiently operate these
technologies independently of technology providers.

3.2.2. Servers and Cloud
Environments

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

On the other side, edge computing is becoming highly relevant for modern environments,
including sensing capabilities, remote control and actuating, and local computing and
storage. These environments are extremely diverse in terms of form factor, capabilities,
energy. The Edge and IoT ecosystem is thus extremely diverse in terms of technologies,
manufacturers, OEMs, vendors, resellers and integrators. Europe is a player in IoT, for
example with the RIOT²⁴ operating system in open source, and with technology providers
such as Bosch, Schneider, etc. It needs to preserve access and ownership of these
technologies, by promoting them and the associated standards, and ensuring that they
remain on one hand anchored in Europe, on the other hand widely open to contributions
from outside.

23

3.2.3. Edge and IoT

KEY
TAKEAWAY
/ASSOCIATED
RISK

Access to technologies: Europe needs to ensure that it
has access to required technologies, either by
developing commercial alternatives or supporting
open-source alternatives to technologies not directly
available in the EU. Such technologies include operating
systems, virtualization and containerization platforms,
and management platforms for future clouds and
networks.

For the specific case of open source, it needs to ensure
access in the long term, for example by hosting copies
of open-source repositories. The Software Heritage
project²⁵ is an example of such repositories that might
help in ensuring access to the code. One of the
downsides of this is the delay that software updates
may suffer.

Mastering technologies and talent retention: in
addition to code, Europe must preserve the human
resources capable of mastering these technologies to
deliver the services it requires.

Trend setting and R&D: Europe must regain the
capability to deliver innovative software solutions in
these technological domains, stop being a follower and
develop advanced methods and techniques that
comply with its values.

²⁵ The Software Heritage project. https://www.softwareheritage.org/ [Last access on 30 January 2024]
²⁴ RIOT - The friendly Operating System for the Internet of Things. https://www.riot-os.org/ [Last access on 30 January 2024]

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://www.softwareheritage.org/
https://www.riot-os.org/
https://ecs-org.eu/
https://ecs-org.eu/

24

Many applications rely on libraries for specific functions. This is not a new trend, as for
example C code has included the C standard library for decades, and the C compiler without
the C library is close to useless.

This trend has exacerbated in recent world. Major examples include web development
frameworks such as Apache Cordova, Django or Spark, web content management systems
such as Drupal, Wordpress or Joomla, scientific libraries such as TensorFlow or Scikit Learn,
graphical development tools such as React, JQuery, NodeJS or AngulaJS, open-source
application frameworks such as Spring, data stores such as Hadoop. These few examples
demonstrate the diversity of use, multiplicity of languages and necessity of use of software
libraries. Most programming environments (Python, Perl, Java, Javascript, Rust, …) have
extremely large and organized software library repositories on which developers heavily rely.

The key risks are thus to either loose access to the technology (if the source code is removed,
the repository destroyed or altered, etc), or loose the capability to understand, deploy and
efficiently operate these technologies independently of library owners.

3.3.1. Major Software Libraries
3.3 Libraries / Applications

In addition to these libraries, running code relies on many pieces of middleware to execute,
ensuring functions such as routing, naming, message passing, publish and subscribe. There
exist several platforms, protocols and brokers that are widely used in industry to build
complex applications and information systems. Examples include Apache Kafka, MQTT, IBM
Websphere, JBoss or Oracle Fusion. As one can see from these examples, several of these
middleware platforms are commercial, and only a few are freely available.

3.3.2. Middleware

KEY
TAKEAWAY
/ASSOCIATED
RISK

Access to libraries: similarly to operating systems and
virtualisation platforms, Europe needs to maintain
access to library or middleware code.

Understanding of code: in addition to code, Europe
must preserve the human resources capable of
mastering these libraries and middleware platforms to
deliver the services it requires.

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

25

3.4. Associated Software Platforms

Over the past decade, the dynamic evolution of database technologies, with a keen focus on
MySQL and Elasticsearch, has significantly benefited software developers. MySQL, a
reference in the domain of relational databases, underwent transformative updates over the
last decade. The last releases not only bolstered performance but also introduced vital
security enhancements, providing developers with a more robust and feature-rich platform.

The concerns surrounding MySQL's acquisition by Oracle Corporation spurred the emergence
of MariaDB, a fork that has ensured the continuous development of MySQL as an open-
source database. This development has empowered developers with the freedom to choose
a database solution aligned with their preferences and open-source principles.

Elasticsearch, a powerful distributed search and analytics engine, has also become integral to
developers' toolkits. Its evolution beyond simple text search to encompass diverse use cases,
such as log and event data analysis, has empowered developers to create sophisticated and
efficient applications. The seamless integration of Elasticsearch into the ELK (Elasticsearch,
Logstash, Kibana) stack has simplified log processing and visualization, offering developers a
cohesive and user-friendly environment.

Moreover, the raise of cloud-native technologies has brought further convenience to
developers working with MySQL and Elasticsearch. Managed services provided by Cloud
players have streamlined deployment and scalability, allowing developers to focus more on
application logic and less on infrastructure management. Containerization technologies,
particularly Docker, have facilitated smoother deployment and management of database
instances.

Another interesting element to notice when considering associated platforms is the great
usage made by developers of real-time analytics and data processing. They have become
paramount in modern applications, and both MySQL and Elasticsearch have responded
adeptly. More functionalities dedicated to availability and low latency, have empowered
developers to build responsive and scalable applications.

Eventually security, a major concern, has seen significant improvements in both MySQL and
Elasticsearch. Commitment of both technologies to security is reflected by the
implementation of features like role-based access control, providing developers with the
confidence to manage sensitive data securely.

In summary, the past decade's evolution in database technologies, particularly within MySQL
and Elasticsearch, has significantly empowered software developers. From enhanced
performance and security measures to simplified deployment through cloud-native solutions,
developers now enjoy a more positive and productive environment for their daily work,
enabling them to focus on creating innovative and efficient applications.

3.4.1. Databases

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

Web server technologies, exemplified by Apache, continue to play a pivotal role in software
development mainly due to their fundamental function in serving web content and
applications.

Even though they suffered from their potential lack of adaptability, modular architecture,
and extensive community support, developers still rely on these established servers,
including Nginx and Microsoft's IIS, for their stability and versatile capabilities. One major
advantage is still that they allow seamless deployment across various operating systems.

The integration of web servers with cloud technologies has even further solidified their
relevance. Apache, for instance, is facilitated by cloud technologies due to its compatibility
with containerization, like Docker, and orchestration tools such as Kubernetes. Many cloud
providers today provide the necessary tools and features to ease their usage.

This strategy from cloud technologies providers to propose web servers streamlined
deployment is beneficial for many software developers. It enables consistent and scalable
application hosting across diverse cloud environments. In a sense, cloud services provide the
infrastructure agility that complements web servers, enhancing their efficiency and enabling
developers to leverage the benefits of both established server technologies and modern
cloud ecosystems.

In this symbiotic relationship, web servers remain a major element in software development,
bridging the gap between traditional and cloud-native application architectures.

26

3.4.2. Web servers

KEY
TAKEAWAY
/ASSOCIATED
RISK

Database and web server technologies have evolved in
recent years and have significantly facilitated the work
of developers. Such development, coupled with the
usage of cloud-native technologies, has enhanced the
creation of modern and scalable applications. Security
remains a focus and it is assured by specific features
tasked at providing the necessary confidence to the
software development ecosystem.

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

RECOMMENDATIONS

4.

E
C

SO
 T

ec
h

n
ic

al
 P

ap
er

 —
 S

of
tw

ar
e

Su
p

p
ly

 C
h

ai
n

 S
ec

u
ri

ty

Building on the previous analysis, this section presents a set of recommendations to help
organisation secure their software supply chain. As described in Section 2, the development
of modern software involves a wide variety of environments, tools, services, and
components. To prevent software security vulnerabilities, defend against cyberattacks, and
allow for regulatory compliance, security need to be considered in every step and aspect of
the software supply chain, and every stakeholder must contribute.

Most of the codebase of an application is composed by 3rd party and open-source software.
This means that the development of secure software does not only require to implement
security measures and follow secure coding best practices for the newly developed code but
also to securely handle the acquisition of the consumed components.

At the same time, the security of each system implementing the supply chain (cf. Figure 1)
has to be handled following best practices (e.g. isolating build environments) and through
hardening. In fact, compromising a vulnerable system involved in the development, build,
and delivery could allow the injection of malicious code into the built software and affect all
downstream users.

In order to be successful, an organization must integrate secure software development
practices into all of its ongoing procurement activities. The following paragraphs contain
some recommendations on how to do so, including both practices that are available and
ready to use as well as research and innovation needs.

28

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

Applying secure software development practices (short-
term view).

It is important to keep working toward strengthening the
existing guidelines for developers on the correct way to
write/consume code; such guidelines should be strong and
actionable. Moreover, it would be beneficial to make freely
accessible tools for checking compliance with the right coding
guidelines and ensure that they are largely deployed in all
CI/CD pipelines (i.e., make it impossible for any code going
through CI/CD not to be verified).

Another short-term recommendation would be to promote
the use of security requirements specifications, as well as the
risk analysis on these requirements (a.k.a. manifests), in
order to make security visible to the end users, and clearly
explain the needs of each software.

Finally, it is always important to leverage the knowledge of
past code mistakes while building code checking tools. In the
same way, existing standards (e.g. TCP/IP, X.509, PDF, …)
should be reviewed and rewritten when weaknesses are
found.

Clarify and consolidate frameworks for a secure software
supply chain.

The OSS SSC framework includes a mapping of requirements
to other relevant specifications including OWASP SCV and
SLSA. However, a more in-depth comparison is needed
especially with respect to the maturity levels defined. Due to
the overlap among the different frameworks, a consolidation
effort is needed to provide a unified guidance clearly defining
cross framework requirement mappings and how SLSA levels,
OSS SCC maturity levels, and OWASP SCV level should be
used.

29

4.1. Frameworks and Development
practices for a Secure SW Supply Chain

RECOMMENDATION 1

RECOMMENDATION 2

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

30

Applying secure software development practices (long-term
view).

Modern computer languages offer enhanced security
functions, such as out-of-bounds checking, memory safety,
dynamic and static type safety, more secure concurrency
models, immutability, sandboxing, and isolation. These
features make such languages ideal for new security-critical
developments, while languages that allow unrestricted
memory access and lack compile-time and runtime type
checking should be used with caution. Notable examples of
modern languages with strong security features include Rust,
Go, Java, C# and Swift. In contrast, languages such as C/C++
and, to some extent, dynamic languages like PHP and
JavaScript pose greater security challenges due to issues like
memory corruption, buffer overflows, race conditions, unsafe
input handling, dynamic code evaluation, and limited static
analysis capabilities.

RECOMMENDATION 3

Maintain and update software securely.

There should be some form of automatic trigger notification
after some time that update verification hasn’t been active in
a software. Such trigger should block the usage of the
software in question. Also, further development should be
made in the use of code signature, updates and development
of a general architecture/service to maintain and update
software securely. Quite importantly, the update processes
should include vetting management mechanisms with the
intent to address attackers exploiting the common belief of
always and quickly updating to latest versions to then ship
malicious versions of open-source artifacts.

Finally, attention should be paid on hight test coverage of
implemented functions, to limit regressions in future
development and maintenance while improving efficiency.
Failing to do so won't guarantee that the code will still be
running in the intended way after an update.

RECOMMENDATION 4

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

Create and maintain a Software Bill of Materials (SBOM) in
a machinereadable format, and use Software Composition
Analysis tools.

An effort to increase transparency is the software bill of
materials (SBOM). An SBOM is a list of components related to
a given software artifact, comparable to the list of ingredients
on food packaging.

Maintaining an inventory of components used in the
developed software is key for its maintenance and
auditability. Moreover, the availability of SBOM data for
components to be consumed allows for verifications that can
be exercised by downstream users, depending on the content
and properties of SBOMs. For instance, some specifications
for SBOMs suitable for automated analysis requires a
machine-readable format, a timestamp, a signature, and
individual components to be identifiable using consistent
naming schemes and digests (to describe their provenance
and pedigree).

The creation of SBOMs can be automated. SPDX, CycloneDX,
and SWID are prominent machine-readable standards and
formats for SBOMs. A detailed software bill of materials
must be produced and maintained by the project members
(cf. Figure 2), ideally using automated Software Composition
Analysis (SCA) tools. To avoid tampering, the SBOM must be
securely hosted and distributed by package repositories, and
carefully checked by downstream users regarding their
security, quality, and licence requirements.

On top of producing SBOMs, Software Composition Analysis
tools can automate the inspection of the components of a
software product. Hence, they are an important step in CI/CD
pipelines to match desired security requirements (e.g.,
integrity checks, quality and security metrics verification,
provenance etc.).

31

4.2. How to reduce the risk exposure

RECOMMENDATION 5

Section 2.2 highlighted a new thread of risks to the software supply chain originating from
the reliance on 3rd party and open-source components. The lack of transparency and
traceability was identified as a major obstacle.

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

Maintain an inventory of all systems and software used
throughout the development lifecycle.

Not only it is important to have an inventory of the
developed software, including both proprietary code as well
as its 3rd party and open-source dependencies, but also all
the systems and software used throughout the development
lifecycle should be reflected in an accurate inventory. Patch
management is required to make sure that those are not only
up-to-date but also free of malicious and vulnerable code
that could be exploited to compromise project resources,
e.g., source code, build configuration or binary artifacts.

It depends on the respective component or ecosystem
whether automated update and vetting mechanisms are
available, and individual risk analyses can be employed to
decide whether such mechanisms or manual updates are
preferred. Blindly updating in an automated fashion (e.g.,
specifying version ranges) should be avoided since, some
attack examples misused this feature to deliver malicious
versions to downstream users. While exact version
specifications prevent upgrade or downgrade attacks, they
cannot prevent a compromised index from serving a
malicious package having the same version identifier.

32

Design the build process to be reproducible.

In the context of ensuring the integrity of built software, the
build process should be designed to be reproducible. This
means that all the results for every build starting from a given
source code are identical. Who is producing the software
should describe all the requirements and steps to reproduce
the build, while who delivers the software should securely
provide such information. This allows consumers to verify
that there are no discrepancies, and that no malicious code
was injected during the build process.

RECOMMENDATION 6

RECOMMENDATION 7

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

33

Create and maintain a European trusted repository of
vetted open-source components.

Maintaining an up-to-date and vetted library of open-source
components in Europe as a distributed and secure repository,
would allow for better control over the consumed
components and may prevent attacks that tamper packages
in public hosting systems. Having such library in the form of a
trusted, verified repository of source code, both package
repository administrators and consumers can opt for building
packages directly from such source code, rather than
accepting pre-built artifacts.

Maintainer of package repositories would reduce the risk of
hosting components originated by subverted project builds,
and consumers would eliminate all risks related to the
compromise of 3rd-party build services and package
repositories. Alternatively, having a European library of
vetted components, may reduce the risks of consuming
subverted legitimate packages while sharing the effort of
establishment of internal repository.

RECOMMENDATION 8

Define and use metrics to assess the security posture of
open-source software components across different
dimensions.

Security, quality, and health metrics can be used to assess the
security posture of open-source software components and
the security risks resulting from their use. Such metrics may
consider, for instance, information about the lifelines of a
project or whether given security best-practices are applied.
They help end-users to decide which components to
consume by making them aware of the security implications
and can be computed prior to the first use but also on a
continuous basis for used dependencies.

The OpenSSF Scorecards and the Fosstar rating core are
examples of frameworks to compute a security rating for
open-source components. Next to supporting downstream
users in selecting components, they also aim at improving the
security best practices of open-source projects. As the rating
comes from the evaluation of different metrics, they can be
used to highlight specific areas to be improved and provide
greater visibility on the security posture of projects. The SLSA
levels of assurance are another means to measure the
security posture of an open-source project and provide
visibility about the best-practices and security guidelines
adopted.

RECOMMENDATION 9

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

34

Take responsibility for your contribution to supply chain
security, acknowledging your role in the software
ecosystem.

Reducing the security risks in the software supply chain also
requires organizational commitment and investments. All
involved stakeholders must cooperate as the successful
implementation of some recommendation requires
contributions by different actors.

As an example, code signing enforces binary and application
integrity, hence ensures that a program comes from a valid
source (authenticity) and that has not been modified since it
was signed (integrity). To make it effective, project members
should digitally sign the packages when uploading them to a
package repository, administrators of package repositories
should enforce code signing either providing signing
functionalities or verifying the signatures, and consumers
should assess the integrity of the downloaded packages and
that the provenance is a trusted source by checking the
signatures.

Organisations should thus support and provide trainings and
resources to develop the required skills. Moreover,
consumers of open-source components should also consider
investing in their maintenance via funding and contributions
to ensure projects can be managed securely both in terms of
applied best practices and processes as well as increasing
robustness against attack (e.g., social-engineering attacks).

RECOMMENDATION 10

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

35

4.3. Where the innovations are needed
(concrete innovation)

Though several efforts are being made to provide structured guidance on how to secure the
software supply chain, still the complexity of today’s supply chains (and open-source supply
chains in particular) results in a significant attack surface that requires to be further
investigated.

Automate the vetting process for open-source artefacts.

Attackers have numerous opportunities for injecting
malicious code into open-source artifacts, and mandated
countermeasures usually address the known attack vectors.
Vetting components in an automated and efficient way is
thus key for the early identification of malicious code and for
being able to anticipate attacks exploiting new vectors not
yet covered by commonly used safeguards. Existing works for
the detection of malware need to be extended and adjusted
to the characteristics of malicious packages used in open-
source supply chain attacks as they are usually characterized
by a small fraction of harmful code hidden in a bigger corpus
of legitimate code.

RECOMMENDATION 11

Advance software composition analysis to include an
indication of the level of assurance.

The dependency of software products on open-source
components that may be subject to known vulnerabilities
also need additional support. The existing software
composition analysis (SCA) tools represent an important first
step, however they lack information about the level of
assurance they provide in terms of precision and recall. In
fact, a secure software supply chain should not only prescribe
the usage of SCA tools but should require a level of assurance
from the tool being used.

RECOMMENDATION 12

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

Prioritise investigations into attack surface reduction.

Another promising direction to be investigated is the idea of
reducing the attack surface of software products by removing
all dependencies that are not actually needed. Software
developers declare direct dependencies on open-source
components whose functionality they want to use in the
software under development or during development, e.g.
compile dependencies or build plugins.

Those dependencies have their own dependencies, so-called
indirect or "transitive dependencies", all of which are
automatically resolved and downloaded by package
managers. However, some of the transitive dependencies
may not be needed in the specific development context, e.g.
because a certain functionality of a direct dependency is not
used. While the removal of such "bloated dependencies" can
reduce the supply chain's attack surface, their identification is
not straight-forward, e.g. due to dynamic programming
features.

36

Support community efforts to provide code-level data sets
to facilitate AIbased approaches.

Research in the area of vulnerability and malicious code
would greatly benefit of a community effort for the creation
and maintenance of code-level datasets that would enable AI-
based approaches and the comparison of different
approaches.

The use of Artificial Intelligence (AI) is being explored for the
development of cybersecure products during the lifecycle of
software systems engineering. AI can be used for the
collection of cybersecurity requirements, automatic
generation of cybersecure software, testing and verification
phase as well as for the estimation of the efforts necessary to
build cybersecure components.

RECOMMENDATION 13

RECOMMENDATION 14

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

AKNOWLEDGEMENTS

5.

E
C

SO
 T

ec
h

n
ic

al
 P

ap
er

 —
 S

of
tw

ar
e

Su
p

p
ly

 C
h

ai
n

 S
ec

u
ri

ty

The European Cybersecurity Organisation’s (ECSO) WG6
aims to contribute to define the cyber security EU R&I
roadmap and vision to strengthen and build a resilient EU
ecosystem. From the analysis of the challenges of
digitalisation of the society and industrial sectors this WG
identifies what are the capacities and capabilities to
sustain EU digital autonomy by developing and fostering
trusted technologies.

The following is a special acknowledgement of the active
contributions in various capacities from ECSO WG6
members.

EXPERT CONTRIBUTIONS: Ana Ayerbe (Tecnalia), Anett
Madi-Nator (Cyber Services), Costanza Pestarino (ECSO),
Henrik Plate (SAP), Herve Debar (IMT), Matteo Mole
(ECSO), Patricia Mouy (CEA), Roberto Cascella (ECSO),
Serena Ponta (SAP), Yoann Klein (Huawei), Volkmar Lotz
(SAP)

@ ECSO WG6 has the right to update, edit or delete the
paper and any of its contents as the field of cybersecurity is
evolving all the time.

38

ECSO TECHNICAL PAPER — SOFTWARE SUPPLY CHAIN SECURITY

www.ecs-org.eu

https://ecs-org.eu/
https://ecs-org.eu/

Avenue des Arts 46, 1000, Brussels (Belgium)
wg6_secretariat@ecs-org.eu

www.ecs-org.eu

https://ecs-org.eu/
mailto:wg6_secretariat@ecs-org.eu
http://www.ecs-org.eu/

