ABOUT ECSO

The European Cyber Security Organisation (ECSO) ASBL is a fully self-financed non-for-profit organisation under the Belgian law, established in June 2016.

ECSO represents the contractual counterpart to the European Commission for the implementation of the Cyber Security contractual Public-Private Partnership (cPPP). ECSO members include a wide variety of stakeholders across EU Member States, EEA / EFTA Countries and H2020 associated countries, such as large companies, SMEs and Start-ups, research centres, universities, end-users, operators, clusters and association as well as European Member State’s local, regional and national administrations. More information about ECSO and its work can be found at www.ecs-org.eu.

Contact

For queries in relation to this document, please use wg5_secretariat@ecs-org.eu.
For media enquiries about this document, please use media@ecs-org.eu.

Disclaimer

The use of the information contained in this document is at your own risk, and no relationship is created between ECSO and any person accessing or otherwise using the document or any part of it. ECSO is not liable for actions of any nature arising from any use of the document or part of it. Neither ECSO nor any person acting on its behalf is responsible for the use that might be made of the information contained in this publication.

Copyright Notice

© European Cyber Security Organisation (ECSO), 2021
Reproduction is authorised provided the source is acknowledged.
TABLE OF CONTENTS

Executive Summary ...3

1. Introduction ...5

 1.2 ENISA Reports (The European Union Agency for Cybersecurity) ..7

 1.3 European Cyber Security Body of Knowledge and IEEE Framework ...7

 1.4 ECSO Reports, Practitioners Input and Empirical Market Analysis ...8

 3.1 Practitioners’ analytical reasoning and applied science method ..10

 3.2 Pedagogical philosophy ..11

 3.3 European competence-based approach and practitioners’ model ..11

4. Curriculum Content Structure ..14

 Cybersecurity cluster-01: Cybersecurity Principles and Management ..15

 Cybersecurity cluster-02: Cybersecurity Tools and Technologies ..15

 Cybersecurity cluster-03: Cybersecurity in Emerging Technologies ..15

 Cybersecurity cluster-04: Offensive Cybersecurity Practitioners ..16

5. Reference Curriculum ..17

 5.1 Template of subject description and details ..17

 5.2 List of subjects and details ..18

6. Key takeaways from the Minimum Reference Curriculum35

Annex ...36

References ..40

ACKNOWLEDGEMENT ...42
Executive Summary

Background: There is a growing need for a skilled cybersecurity workforce. Various studies across the globe from industry and academia confirm that the cybersecurity workforce demand is very high and that it is difficult to hire competent professionals. The 2020 edition of the annual Cybersecurity Workforce Study published by (ISC)² [1] states that the shortage of cybersecurity professionals is 3.1 million globally which, although having decreased from 4 million, is still a significant number. In the study, they reviewed nearly 3790 organisations from across the globe including North America, Latin America, Asia-Pacific (APAC) and Europe, and nearly 56% of respondents said that their organisation is at moderate or extreme risk of cybersecurity attacks, mainly due to a lack of competent workforce. Europe had an estimated gap of 168,000 cybersecurity competent and skilled professionals in 2020 and, according to many studies, it is expected to increase significantly in the future.

European industry-academia joint workforce and engagement: The agile and changing cyber environment sets high requirements for workforce awareness, competence, and skillsets. The European Cyber Security Organisation’s consolidated industry and academic partnership (composed of around 270 members) is reflected in the development activities of Working Group 5 on “Education, Awareness, Training, and Cyber Ranges” and the Task Force “European Human Resources Network for Cyber” (EHR4CYBER). Cybersecurity education and professional training is one of the key solutions to the shortage of the cybersecurity workforce. Common requirements and a broad understanding between industries and academia for the cybersecurity education and professional training requires common curriculum guidelines. The European Cyber Security Organisation’s 2018 analysis paper on “Gaps in Education & Professional Training and Certification” [2] also clearly indicated this need. In the scope of its SWG 5.2 on “Education & Training”, ECSO would like to provide a viable and sustainable solution with this guideline and paper: “European Cybersecurity Education and Professional Training: Minimum Reference Curriculum”.

Minimum Reference Curriculum: The minimum reference curriculum is based on the overarching best practices, ECSO WG5 expert group’s empirical studies, recognised framework including European Cyber Security Body of Knowledge (CyBOK), IEEE guidelines, European JRC & ENISA reports, and ECSO papers, among other state-of-the-art resources and working-life practices. CyBOK [3] is a comprehensive Body of Knowledge (total 19) to inform and underpin education and professional training for the cybersecurity sector. The minimum reference curriculum also uses EU Member States’ working-life recommendations, best practices and successful case studies. The minimum reference curriculum provides a unified and common understanding between different parties involved in cybersecure societies, broad understanding and common language for cybersecurity within Europe and its working-life communities. The guideline adopts an evidence-based competence framework and structure which is presented in the minimum reference curriculum. It includes the subject name, brief subject description, subject content and topics, and learning outcomes.

Competence Framework and Methodologies: The competence framework and pedagogical methodology is based on the European Qualification Framework (EQF) and European Credit Transfer and Accumulation System (ECTS) recommendations and requirements. The work is the outcome of 10 years of research, innovation and evidence-based best practices conducted by European scholars and professionals [4].
Target groups: This guideline is for cybersecurity learners, higher education institutes, practitioners, professional training and workforce development providers, and employers. It fills the gap between industry and academia in practice to help the skills and competence development of the cybersecurity workforce. It also consolidates relevant communities for an effective and efficient human resources capacity and capability building effort. The guideline can be easily used to tailor cybersecurity education and professional training to the needs of professional life.

Takeaway and outcome: In addition to providing guidelines to the target groups mentioned above, this document can serve as a reference and recommendation document for the EU’s Cybersecurity Competence Centre, the European Commission, European cybersecurity practitioners, European Union Agency for Cybersecurity (ENISA) and other relevant EU agencies. Overall, this is a compact and effective hands-on guideline for cybersecurity education and professional training curriculum to targeted groups including academic institutes, professional training providers, employers, working-life communities, cybersecurity human-resource managers and learners.
1. Introduction

Background and overview: The European Commission is increasingly including cybersecurity as a main priority in its security and digital policy documents “The EU Security Union Strategy for 2020 to 2025 succeeding the European Agenda on Security (2015-2020), focuses on priority areas where the EU can bring value to support Member States in fostering security for all those living in Europe, notably including cybersecurity”[5].

If we analyse the context, modern businesses and organisations can suffer significant financial and operational damage with any security breach. The ever-increasing technology driven modern business has greater cybersecurity threats and risks. For example, many independent studies are reporting that data breaches, cyberattacks and cybercrimes are costing close to the USD 500-600 billion globally in the year 2018-2019. The recent study by Ponemon Institute [6] showed that on average annual losses to companies that suffered a successful cyber-attack globally was US $3.86 million. Secure digital systems play the most important role to empower businesses, such is the importance of cybersecurity in today’s world. Cybersecurity needs urgent attention from decision makers, top managers and leaders to continue thriving in the 21st century [7].

A competent and skilled workforce plays a pivotal role in making businesses and communities thrive. The European Union Agency for Cybersecurity (ENISA) published a report on European Cybersecurity Skills Development in EU. The report and research findings clearly manifest the importance of education and professional training, “Studying cyber security and to produce graduates with ‘the right cyber security knowledge and skills’. Many of the current issues in cyber security education could be lessened by redesigning educational and training pathways that define knowledge and skills which students should possess upon graduation and after entering the labour market”[8].

The minimum reference curriculum can play a proactive and pivotal role in providing feasible solutions for European cybersecurity workforce capacity-building through cybersecurity education and professional training programmes. The uniqueness of this minimum reference curriculum guideline is that it combines the best practices of industry and academia to meet the needs of professional life through a truly practitioner’s approach. This is an ongoing effort to leverage on the cybersecurity body of knowledge (CyBOK) framework along with professional certifications.

Scope of the paper: The paper includes the guidelines relative to the competence & skills development framework along with pedagogical methodologies for the higher education programme requirements (compatible with the Qualifications Framework for the European Higher Education Area) including the European Qualification Framework (EQF, learning outcomes-based framework) and European Credit Transfer and Accumulation System (ECTS, validations of learning-outcomes). This paper presents high-level descriptions on this matter and provides a minimum reference curriculum covering a wide range of cybersecurity knowledge areas needed for the workforce to conduct their day-to-day activities and tasks, in addition to providing sustainable cybersecurity workforce solutions. Overall, this paper presents clear evidence-based practitioner guidelines for cybersecurity subject structures, subject description and objectives, key content and topics, as well as learning outcomes. The paper is intended to be a living document to be regularly updated based on inputs from the cybersecurity community and developments in the field.
European Cybersecurity Education & Professional Training: Minimum Reference Model Curricula

2. Mapping with Best Practices, Current Frameworks and Market Analysis

Best practices and state-of-the-art: This paper provides best practices and solutions for the cybersecurity practitioners and businesses and has been developed using various sources and market analysis of the state-of-the-art. It is not reinventing the wheel but trying to fill the gaps beyond the state-of-the-art. In the following, we highlight the key frameworks, best practices and state-of-the-art that were considered while developing this paper:

About JRC report: This report [9] was published in 2019 with the goal of “aligning the cybersecurity terminologies, definitions and domains into a coherent and comprehensive taxonomy to facilitate the categorisation of EU cybersecurity competencies.” The proposed Cybersecurity Taxonomy envisions a three-dimensional view as depicted in the Figure 1. The JRC report considers existing frameworks and state-of-the-art, including the US NICE framework, IEEE Cybersecurity curriculum and others (references in JRC report). Our paper considers those as part of the JRC recommended best practices and they are therefore not explicitly described hereafter.

![Figure 1: European Commission’s JRC- Proposal of Cybersecurity Taxonomy](image-url)
1.2 ENISA Reports (The European Union Agency for Cybersecurity)

About ENISA reports: “The European Union Agency for Cybersecurity, ENISA, is the Union’s agency dedicated to achieving a high common level of cybersecurity across Europe. Established in 2004 and strengthened by the EU Cybersecurity Act, the European Union Agency for Cybersecurity contributes to EU cyber policy, enhances the trustworthiness of ICT products, services and processes with cybersecurity certification schemes, cooperates with Member States and EU bodies, and helps Europe prepare for the cyber challenges of tomorrow. Through knowledge sharing, capacity building and awareness raising, the Agency works together with its key stakeholders to strengthen trust in the connected economy, to boost resilience of the Union’s infrastructure, and, ultimately, to keep Europe’s society and citizens digitally secure.”

This paper considers previous development work including the following reports and ECSO WG5 collaborative workshops, meetings, seminars and collective development work with ENISA.

- Cybersecurity Skills Development in the EU (2020)
- Status of privacy and NIS course curriculum in EU Member States (2015)
- Roadmap for NIS education programmes in Europe (2014)

1.3 European Cyber Security Body of Knowledge and IEEE Framework

About CyBOK: The CyBOK project [3] originated as a European research and innovation project. The CyBOK framework brings cybersecurity in line with the more established sciences by distilling knowledge from major internationally recognised experts to form a Cyber Security Body of Knowledge that will provide much-needed foundations for this emerging topic. The CyBOK development work is heavily combined with IEEE working group work. Most of the scientific based work is aligned with the IEEE Cybersecurity guidelines. Therefore, it is evident that the CyBOK model represents a similar approach and similar outcomes as IEEE’s work.

“The Cyber Security Body of Knowledge (CyBOK) aims to codify the foundational and generally recognised knowledge on cyber security. In the same fashion as SWEBOK, CyBOK is meant to be a guide to the body of knowledge; the knowledge that it codifies already exists in literature such as textbooks, academic research articles, technical reports, white papers, and standards. Our focus is, therefore, on mapping established knowledge and not fully replicating everything that has ever been written on the subject. Educational programmes ranging from secondary and undergraduate education to postgraduate and continuing professional development programmes can then be developed on the basis of CyBOK. There are 19 Knowledge Areas (KAs) of the CyBOK into a coherent overall framework (https://www.cybok.org).”

Scope: A comprehensive Cyber Security Body of Knowledge (total 19) to inform and underpin education and professional training for the cybersecurity sector (see Figure 2). This paper has adopted the 19 body of knowledge and knowledge areas within its curriculum, in addition to other recommended knowledge areas.
1.4 ECSO Reports, Practitioners Input and Empirical Market Analysis

About ECSO reports: ECSO’s working group (WG) 5 on “education, training, awareness, and cyber ranges” aims to contribute towards a cybersecurity competences and capacity building effort for the European digital agenda, through increased education, professional training and skills development, as well as actions on awareness-raising and gender inclusiveness. The paper considers previous development work including the following reports, workshops, meetings, seminars, EU cybersecurity executives and expert insights-views, and qualitative data through WG communication channels.

- EHR4CYBER - Information and Cyber Security Professional Certification (2018; update 2020)
- Building the Future European Cybersecurity Awareness Campaigns: Outcome paper from ECSO workshop (2019)
European Cybersecurity Education & Professional Training: Minimum Reference Model Curricula

- Understanding Cyber Ranges: from Hype to Reality (2020)

The collective development work also leverages the benefits of scholarly work from this paper’s editor and the following table depicts the knowledge base analysis of the literature studies.

<table>
<thead>
<tr>
<th>Database Source</th>
<th>Gathering information: Keywords for Title, Abstract and Full Text for state-of-the-art (SOTA)</th>
<th>Re-representing Identifying the most relevant work beyond state-of-the-art (BSOTA)</th>
<th>Developing insight Implementing a sense-making loop and extracting new insights</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM</td>
<td>219</td>
<td>24</td>
<td>68</td>
</tr>
<tr>
<td>Emerald Insight</td>
<td>85</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Google Scholar</td>
<td>98</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>IEEE Xplore</td>
<td>175</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Science Direct</td>
<td>95</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Wiley Digital Database</td>
<td>35</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>707</td>
<td>68</td>
<td>68</td>
</tr>
</tbody>
</table>

The basis for this paper includes European perspectives and market needs, especially as ECSO has over 260 members, out of which around 150 members and almost 300 individual experts are part of WG5 (at the time of writing). Additionally, ECSO WG5 development work includes a specialised European Human Resources Network for Cyber (EHR4CYBER) that addresses European market analysis and practitioners’ current needs. The WG members represent the industrial and market needs. The empirical data and information is a reflection of collective development work including experts’ views, comments, suggestions, observations, and presentations at seminars, workshops and general WG5 discussions.
3. Curricula Development Methodologies and Process

The methodology for this curriculum development adopted a combined approach considering pedagogical philosophy, thought models, and scientific approaches as described below:

3.1 Practitioners’ analytical reasoning and applied science method

The curriculum development used the practitioners’ analytical reasoning and the applied science approach includes (1) desktop research and scientific literature reviews, (2) qualitative and quantitative data collections from experts, practitioners and working-life collaborators, (3) analysis of the information and re-represent, (4) producing initial solutions and results, (5) application and developing insights. The complete process has been iterated with the sense-making phases (see Figure 3) along the timeline of the last 5 years with a pilot implementation [10].

![Figure 3: Analytical Reasoning & Applied Science Method](image)

1 Source of the image: Scholarly work of the ECSO WG5 Co-chair Paresh Rathod (Laurea-Finland)
3.2 Pedagogical philosophy

The minimum reference curriculum is prepared adopting the underlying European competency and learning outcome-based pedagogical philosophy from Bloom’s taxonomy [11]. Our qualitative data suggested that practitioners find it difficult to comprehend Bloom’s taxonomy using a cybersecurity competency framework. This led to an effort to simplify Bloom’s taxonomy pyramid.

Competence is an umbrella term that includes ability, knowledge, and behaviour to perform an act. Further, the Oxford Dictionary of Sport Science and Medicine defines competence as “a basic psychological need to be able to succeed at optimally challenging tasks and achieve a desired outcome.”

The practice model starts from the bottom fact-finding layer and builds towards the top layer of creating new solutions.

![Simplified Bloom's Taxonomy](image)

Figure 4: Simplified Bloom’s Taxonomy

3.3 European competence-based approach and practitioners’ model

This paper presents an evidence-based and practitioner model with a simplified Bloom’s taxonomy into three key competence and skills development phases offered within basic, intermediate and advanced cybersecurity subjects. Bloom’s taxonomy is divided into three competence levels: knowledge, skills, and practice.

2 Source of the image: Kraus-Anderson University
European Cybersecurity Education & Professional Training: Minimum Reference Model Curricula

The ever-increasing cybersecurity challenges require a broad understanding of cybersecurity professional competencies. The thought model and simplified competence framework aims to provide a clear understanding of the depth of learning outcomes needed in professional life.

The minimum curriculum includes basic, intermediate and advance level subjects. Basic subjects offer broad cybersecurity principles, knowledge and comprehension. The intermediate-level subjects offer applications and analysis of cybersecurity skills along with attitudes. The advanced level subjects offer more deep competences including synthesis, professional proficiency and evaluation of cybersecurity working-life abilities, practices in day-to-day tasks.

In the above overview, different logical competency levels are presented. The following Table 2 presents the different levels of competencies adopted from the European e-Competence Framework (e-CF) [12] for both knowledge, skills and practice levels. In addition, our long-term research confirms the needed revision of the competence model to make it more relevant to working-life practices. This makes it more practical and relevant to the needs of the cybersecurity industry. It is presented in the following Figure 6.

<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Skills and Attitudes</th>
<th>Abilities, Tasks and Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Exceptionally comprehensive and detailed knowledge and understanding of the subject</td>
<td>Carrying out the activity in a very complex context while guiding others in the implementation</td>
<td>Outstanding professional proficiencies covering all levels of cybersecurity practices including people, processes and technologies aspects</td>
</tr>
<tr>
<td>4</td>
<td>Very extensive and detailed knowledge and understanding of the subject</td>
<td>Carrying out the activity in a complex context</td>
<td>Solution oriented and highly efficient cybersecurity professional approaches and practices covering people, processes and technologies aspects</td>
</tr>
</tbody>
</table>

3 Source of the image: Scholarly work of the ECSO WG5 Co-chair Paresh Rathod (Laurea-Finland)
Table 2: Extended European e-Competence Framework (e-CF) for Cybersecurity Competencies

<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge and Understanding of the Subject</th>
<th>Carrying Out the Activity in a Simple Context</th>
<th>Carrying Out Professional Work in More than One Aspect of the Cybersecurity Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic Knowledge and Understanding of the Subject</td>
<td>Carrying out the activity in a simple context under guidance</td>
<td>Intern or junior level professional practices under the supervision of level-3 or higher professionals</td>
</tr>
<tr>
<td>2</td>
<td>Knowledge and Understanding of All Major Cybersecurity Aspects</td>
<td>Carrying out the activity in a difficult context</td>
<td>Detail oriented and hands-on practices in all cybersecurity aspects including people, processes and technologies</td>
</tr>
<tr>
<td>3</td>
<td>Knowledge and Understanding of the Subject in Detail</td>
<td>Carrying out the activity in a difficult context</td>
<td>Detail oriented and hands-on practices in all cybersecurity aspects including people, processes and technologies</td>
</tr>
</tbody>
</table>

Figure 6: Working-life Competence Practice Model

* Sincere Cooperation and Effort, Interpersonal skills and respecting diversity, Intellectual and solution-oriented practices, Attitude of service

* Source of the image: Scholarly work of the ECSO WG5 Co-chair Paresh Rathod (Laurea-Finland)
4. Curriculum Content Structure

The curriculum is organised in a simplified and consolidated structure within the basic, intermediate and advanced competence clusters as shown below:

Cybersecurity Principles and Management
- including human, organisational and regulatory aspects
- basic subjects offering broad cybersecurity principles and management understanding, knowledge and comprehension

Cybersecurity Tools and Technologies
- including cybersecurity methods, tools and techniques
- use of cyber ranges for training/skills development
- cross-cutting intermediate-advanced level subjects offering analysis and applications of cybersecurity skills

Cybersecurity in Emerging Digital Technologies
- including cybersecurity for the Artificial Intelligence, Machine Learning, Virtual Reality and Smart Technology
- advance level subjects offer comprehensive competences including synthesis, leadership and professional proficiency

Offensive Cybersecurity Practitioners
- including cybersecurity and threat analysis in practice (Offensive-Defensive), ethical Hacking in practice, cyber ranges & cyber drills, cybersecurity forensics, Internet of Things, Blockchain

Figure 7: High-level Curricula Structure and Contents

1. Cybersecurity Principles and Management: including human, organisational and regulatory aspects
2. Cybersecurity Tools and Technologies: including security methods, tools and techniques, as well as use of cyber ranges for training/skills development
3. Cybersecurity in Emerging Digital Technologies: including artificial intelligence (AI), cyber forensics, machine learning, virtual reality (VR), smart technology, cloud, digital leadership and professional proficiency
4. Offensive Cybersecurity Practitioners: Mainly cybersecurity and threat analysis in practice including offensive-defensive, cyber ranges & cyber drills, forensics, Internet of Things (IoT), and blockchain

5 Source of the main image: Scholarly work of the ECSO WG5 Co-chair Paresh Rathod (Laurea-Finland)

The thumbnail images from Bing Creative Commons Image Bank
Cybersecurity cluster-01: Cybersecurity Principles and Management

Description: The key objective of the cluster is to understand, plan and implement information and cybersecurity management in an organisation considering the people, processes and technologies. Another useful objective of the module is to gain an understanding of the modern ICT infrastructure and the operations in modern communication networks. The module will also enable the student to plan a comprehensive information and cybersecurity strategy and risk management system for an organisation. In addition, the module offers possibilities of gaining the knowledge and skills to enhance the security of ICT networks by using security by design principles.

The content of this module will provide comprehensive knowledge to apply the principles of information and cybersecurity management, risk management, safeguarding and formulating continuity plans. After completing this module, the student should be able to plan security ICT network and services and anticipate future security threats based on structural vulnerabilities in IP networks.

Cybersecurity cluster-02: Cybersecurity Tools and Technologies

Description: The objective of this cluster is to learn and apply cybersecurity tools and techniques. The module focuses on educating and training the students to provide capabilities against vulnerabilities, risks and threats in cyberspace.

The participant will learn important practices used to safeguard information systems, application and enterprise networks of companies in cyberspace. Further, the students will also learn important practices used to protect data and enterprise systems against cyber threats. The students will gain knowledge and skills to manage vulnerabilities, threats and risks within organisations’ information networks and cyberspace. The students can acquire knowledge and skills of cybersecurity technologies and current practices. Cyber ranges hands-on practice is provided in this module within educational platforms.

Cybersecurity cluster-03: Cybersecurity in Emerging Technologies

Description: The objective of this cluster is to equip the students with cybersecurity tools, techniques and technologies for working-life practices. This module focuses on cybersecurity practitioner competences.

The students will learn important practices used in cutting-edge cybersecurity. The module facilities the best practices for current and future trends of cybersecurity including AI, IoT, cloud, digital businesses and digital leaderships.
Cybersecurity cluster-04: Offensive Cybersecurity Practitioners

Description: The objective of this cluster is to equip the learners with knowledge of offensive and defensive cybersecurity practices. This module focuses on cybersecurity practitioner competences including threat analysis and cyber ranges.

The participant will learn important practices used to safeguard against any cyber-attacks and mitigating cyber catastrophic incidents. Cyber ranges and cyber drills hands-on knowledge and practices are provided in this module within educational platforms. The module helps students to put into practice advanced cyber defence techniques linked to working-life practices including hackathon projects, research & innovation projects, business projects and operating cyber ranges.

6 Source of the main image: Scholarly work of the ECSO WG5 Co-chair Paresh Rathod (Laurea-Finland)
5. Reference Curriculum

The proposed curriculum can be based on the following detailed contents.

5.1 Template of subject description and details

The following table template has been used to illustrate the subject details in this minimum reference curriculum.

<table>
<thead>
<tr>
<th>Subject code – Subject Name</th>
<th>Competence Level: Basic, Intermediate or Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Briefly about the subject:</td>
</tr>
<tr>
<td></td>
<td>Possible alternative subject names:</td>
</tr>
<tr>
<td></td>
<td>• Name 1</td>
</tr>
<tr>
<td></td>
<td>• Name 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject contents and topics</th>
<th>Learning outcomes (competencies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Topic 1</td>
<td>The student is able to (can apply knowledge and has skills to):</td>
</tr>
<tr>
<td>- Topic 2</td>
<td>- do this</td>
</tr>
<tr>
<td></td>
<td>- do that</td>
</tr>
</tbody>
</table>

Suitable job roles:
• Engineer
• Helpdesk Assistant
• Security Assistant
• Etc.

Mapping with the professional certifications
• Pro 1
• Pro 2

Mapping with frameworks such as:
• CyBOK, eCF, ENISA cybersecurity skills framework, etc.

NOTE: The mapping confirms the equivalent knowledge of the candidates
5.2 List of subjects and details

The following tables describe each subject the following information: (1) Subject code and name, (2) Proposed ECTS, (3) Alternative names, (4) Subject contents and topics, (5) Learning outcomes (competencies), (6) Mapping with professional certifications, and (7) Suitable job roles.

EUCS01 - ICT Infrastructure and Security

Competence Level: Basic
The subject is proposed to be 5 ECTS.

Alternative names:
- Computer Network
- Network Applications
- Information Infrastructure and Security

<table>
<thead>
<tr>
<th>Subject contents and topics</th>
<th>Learning outcomes (competences)</th>
</tr>
</thead>
<tbody>
<tr>
<td>> Computer network concept</td>
<td>The student is able to</td>
</tr>
</tbody>
</table>
| > Information and communications technology (ICT) network concepts | - design secure enterprise networks
| > Open System Interconnection (OSI) model | - implement functional ICT networks
| > ICT Network Technologies | - configure, manage, and maintain essential network devices to create resilient networks
| > ICT Network Installation and Configuration | - comprehensive analysis of the existing network configurations
| > ICT Network Media and Topologies | - implement network security, standards, and protocols
| > ICT Network Management | - management of virtual networks
| > ICT Network Security Foundations | - appropriate solutions of ICT network relevant troubles |

Suitable job roles:
- Junior Network Administrator / Computer Technician / Network Field Technician / Help Desk Technician
- Junior System Engineer / System Engineer / IS Consultant
- Network Support Specialist / Network Field Engineer / Network Analyst

Mapping with professional certifications:
- CCNA (Cisco Certified Network Associate) Security
- CompTIA Network+
EUCS02 - Cybersecurity Principles

Competence Level: Basic / Intermediate
The subject is proposed to be 5 ECTS.

Alternative names:
- Introduction to Cybersecurity
- Introduction to Information Security
- Introduction to Information and Cybersecurity
- Cybersecurity / Information Security

<table>
<thead>
<tr>
<th>Subject contents and topics</th>
<th>Learning outcomes (competences)</th>
</tr>
</thead>
<tbody>
<tr>
<td>> Cybersecurity concepts</td>
<td>The student is able to demonstrate the knowledge and abilities of</td>
</tr>
<tr>
<td>> Key cybersecurity body of</td>
<td>- global challenges: cyber threats, risks and attacks</td>
</tr>
<tr>
<td>knowledge (CyBOK)</td>
<td>- pivotal role of the cyber security domains and its</td>
</tr>
<tr>
<td>> Threats, attacks and vulnerabili-</td>
<td>- cyber security risk management and governances</td>
</tr>
<tr>
<td>ties</td>
<td>- The holistic cyber security: people, processes and</td>
</tr>
<tr>
<td>> Security technologies and tools</td>
<td>- fostering cyber security culture with consolidating</td>
</tr>
<tr>
<td>> Security architectures and designs</td>
<td>- professional, legal and ethical practices in cyber</td>
</tr>
<tr>
<td>> Identity and access management approaches</td>
<td>- thriving in the digital and technology driven modern</td>
</tr>
<tr>
<td>> Risk management principles</td>
<td>- businesses: the best practices for privacy and online</td>
</tr>
<tr>
<td>> Cryptography and PKI concepts</td>
<td>- rights</td>
</tr>
<tr>
<td>> Professional, legal and ethical aspects of cyber security</td>
<td>- recognise the main cyber-attack techniques</td>
</tr>
<tr>
<td>> Data privacy and online rights</td>
<td></td>
</tr>
<tr>
<td>> Cyber threat intelligence</td>
<td></td>
</tr>
<tr>
<td>> Web navigation security</td>
<td></td>
</tr>
<tr>
<td>> Social engineering and targeting mobile security</td>
<td></td>
</tr>
<tr>
<td>> Cyber hygiene</td>
<td></td>
</tr>
<tr>
<td>> Malware and malware detection</td>
<td></td>
</tr>
</tbody>
</table>

Suitable job roles:
- Cybersecurity Helpdesk Assistant
- Junior Cybersecurity Analyst
- Systems Administrator / Network Administrator / Security Administrator
- Junior IT Auditor/ Penetration Tester
- Security Specialist / Security Consultant/
- Security Engineer
- Software developer

Mapping with professional certifications:
- CompTIA Security+
- ISACA CSX-F: Cyber Security Fundamentals
- CCNA CyberOps (Cisco Certified Network Associate - CyberOps)
- CCNP (Cisco Certified Network Professional) Security
- NCSP-F (NIST Cyber Security Professional Foundation)
EUCS03 - Information and Cybersecurity Management

Competence Level: Basic / Intermediate

The subject is proposed to be 5 ECTS. The subject can be extended to 10 ECTS with comprehensive coverage of information security management body of knowledge with practice learning activities.

Alternative names:
- Cybersecurity Decision-Making and Management
- Information Security Management
- Management of Information Security
- Cybersecurity Management

<table>
<thead>
<tr>
<th>Subject contents and topics</th>
<th>Learning outcomes (competences)</th>
</tr>
</thead>
<tbody>
<tr>
<td>> Regulatory issues</td>
<td>The student is able to demonstrate the knowledge and abilities of:</td>
</tr>
<tr>
<td>> Information security governance</td>
<td>- information security governance principles</td>
</tr>
<tr>
<td>> Cost-benefit analysis of risk mitigation</td>
<td>- risk management, incident management and compliance principles</td>
</tr>
<tr>
<td>> Information Risk management</td>
<td>- information security programme development and management principles</td>
</tr>
<tr>
<td>> Information Security Program Development & Management</td>
<td>- analysing typical information security management related problems and draw solutions to them</td>
</tr>
<tr>
<td>> Information Security Incident Management</td>
<td></td>
</tr>
<tr>
<td>> Disaster recovery</td>
<td></td>
</tr>
<tr>
<td>> Cybersecurity awareness techniques</td>
<td></td>
</tr>
</tbody>
</table>

Suitable job roles:
- Cybersecurity Manager
- Information Security Manager
- Risk Management Professional
- Security Management Professional
- Risk Analyst / Assessor

Mapping with professional certifications:
- ISACA CISM (Certified Information Security Manager)
- E|ISM (EC-Council Information Security Manager)
- ISO/IEC 27001-P (EXIN Information Security Management ISO 27001 Professional)
- Mile2 CISRM (Certified Information Systems Risk Manager)
- Mile2 CISSM (Certified Information Systems Security Manager)
EUCS04 - Cybersecurity Project Management

Competence Level: Intermediate
The subject is proposed to be 5 ECTS.

Alternative names:
- Information Security Management
- Management of Information Security
- Cybersecurity Management

<table>
<thead>
<tr>
<th>Subject contents and topics</th>
<th>Learning outcomes (competences)</th>
</tr>
</thead>
</table>
| > Cybersecurity Project Foundation
> Cybersecurity Project Life Cycle
> Project Constraints
> Project Team Management, Communication and change management
> Project tools, documentation and presentation
> Risk management plan | The student is able to demonstrate the knowledge and abilities of
- taking sole responsibility for working as a member of cybersecurity research or business project team
- project management body of knowledge (PMBoK) practices or equivalent practices
- planning, implementing and documenting cybersecurity research or business project
- presenting research results in the academic and business format
- manifesting cybersecurity professional practices in the community

Suitable job roles:
- Cybersecurity Manager
- Information Security Manager
- Project Coordinator or Manager
- Project Team Member
- Business Analyst
- Manager, Director, Team Leader

Mapping with professional certifications:
- CompTIA Project+
- Project Management Professional (PMP)
- GCPM (Certified Project Manager)
EUCS05 - Information Systems Security

Competence Level: Advanced
The subject is proposed to be 5 ECTS. The subject can be extended to 10 ECTS with comprehensive coverage of information systems security body of knowledge with practice learning activities.

Alternative names:
- Systems Security
- Enterprise Systems Security
- Information and Data Security
- Data Systems Security

<table>
<thead>
<tr>
<th>Subject contents and topics</th>
<th>Learning outcomes (competences)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>Operations security</td>
<td>The student is able to demonstrate the knowledge and skills of</td>
</tr>
<tr>
<td>>Telecommunications and network security</td>
<td>- code of security professional ethics and confidentiality, integrity, and availability,</td>
</tr>
<tr>
<td>>Information security governance and risk management</td>
<td>- security fundamentals and terminologies</td>
</tr>
<tr>
<td>>Software development security</td>
<td>- cryptographic systems, life cycles, techniques, and methodologies for cryptography and cryptanalysis</td>
</tr>
<tr>
<td>>Cryptography</td>
<td>- identity and access services in the enterprise and provisioning life cycle</td>
</tr>
<tr>
<td>>Steganography</td>
<td>- data and information systems security</td>
</tr>
<tr>
<td>>Security architecture and design</td>
<td>- physical and corporate facility security</td>
</tr>
<tr>
<td>>Access control</td>
<td>- enterprise security and risk management practices including governance, compliance, and business continuity planning</td>
</tr>
<tr>
<td>>Business continuity and disaster recovery planning</td>
<td></td>
</tr>
<tr>
<td>>Legal, regulations, investigations and compliance</td>
<td></td>
</tr>
<tr>
<td>>Physical and environmental security</td>
<td></td>
</tr>
<tr>
<td>>Security in software lifecycle</td>
<td></td>
</tr>
</tbody>
</table>

Suitable job roles:
- Chief Information Officer (CIO)
- Chief Information Security Officer (CISO)
- Cybersecurity Officer
- Cybersecurity Consultant
- Cybersecurity Director

Note: Minimum of 5 years professional experience required.

Mapping with professional certifications:
- CISSP (Certified Information Systems Security Professional)
- SSCP (Systems Security Certified Practitioner)
- CRISC (Certified In Risk and Information Systems Control)
- Mile2 CISSO (Certified Information Systems Security Officer)
- EC-Council CCISO (Certified Chief Information Security Officer)
EUCS06 - Enterprise Cybersecurity Practitioner

Competence Level: Advanced

The subject is proposed to be 5 ECTS. The subject can be extended to 10 ECTS with comprehensive coverage of Enterprise Cyber Security body of knowledge with practice learning activities.

Alternative names:
- Enterprise Network Security
- Advanced Enterprise Security

<table>
<thead>
<tr>
<th>Subject contents and topics</th>
<th>Learning outcomes (competences)</th>
</tr>
</thead>
<tbody>
<tr>
<td>> Organisational Security and Privacy Policies</td>
<td>The student is able to demonstrate the knowledge and skills of:</td>
</tr>
<tr>
<td>> Enterprise Risk Management Process</td>
<td>- enterprise security and advanced risk management</td>
</tr>
<tr>
<td>> Enterprise Network and Security Components, Concepts, and Architectures</td>
<td>- enterprise security operations and architecture</td>
</tr>
<tr>
<td>> Enterprise Security Controls for Host and Server Devices</td>
<td>- identify threats, vulnerabilities and risks associated enterprise network</td>
</tr>
<tr>
<td>> Mobile Devices Security Solutions</td>
<td>- outline common attack tactics, techniques used when hacking enterprise network, applications and wireless networks</td>
</tr>
<tr>
<td>> Software Security Controls</td>
<td>- outline security controls for information systems against common threats</td>
</tr>
<tr>
<td>> Enterprise Security Assessments, Incident Response and Recovery</td>
<td>- technical integration and solutions of Enterprise Cybersecurity</td>
</tr>
<tr>
<td>> Hosts, Storage, and Applications in the Enterprise</td>
<td>- research, development and collaboration within enterprise security</td>
</tr>
<tr>
<td>> Cloud and Virtualization Technologies in the Enterprise</td>
<td></td>
</tr>
<tr>
<td>> Advanced AAA Technologies</td>
<td></td>
</tr>
<tr>
<td>> Cryptographic Techniques</td>
<td></td>
</tr>
<tr>
<td>> Secure Communication and Collaboration Solutions</td>
<td></td>
</tr>
<tr>
<td>> Applying Research Methods for Trend and Impact Analysis</td>
<td></td>
</tr>
<tr>
<td>> Implementing Security Activities across the Technology Life Cycle</td>
<td></td>
</tr>
<tr>
<td>> Diverse Business Units and Enterprise Integration</td>
<td></td>
</tr>
</tbody>
</table>

Suitable job roles:
- Chief Information Officer (CIO)
- Chief Information Security Officer (CISO)
- Cybersecurity Officer
- Cybersecurity Consultant
- Security Architect
- Technical Lead Analyst
- Application Security Engineer
- Security Engineer

Mapping with professional certifications:
- CompTIA CASP (Advanced Security Practitioner)
- CISSP-ISSEP (Information Systems Security Engineering Professional)
- EC-Council C|ND (Certified Network Defender)
EUCS07 - Network and Applications Security

Competence Level: Advanced
The subject is proposed to be 5 ECTS. The subject can be extended to 10 ECTS with comprehensive coverage of Network and Applications offensive-defensive security body of knowledge with practical learning activities.

Alternative names:
- Enterprise Applications Security / Offensive Cyber Security

<table>
<thead>
<tr>
<th>Subject contents and topics</th>
<th>Learning outcomes (competences)</th>
</tr>
</thead>
</table>
| > Offensive and Defensive Security & Introduction to Ethical Hacking | The student is able to demonstrate the knowledge, skills and abilities of
| > Ethical Hacking Process: Footprinting and Reconnaissance, Scanning Networks, Enumeration, Vulnerability Analysis & System Hacking | - the role of ethical hacking in the offensive and defensive network and applications security
| > Malware Threats | - hacking phases and life cycle including foot-printing, reconnaissance, scanning networks, enumeration, vulnerability analysis and system hacking
| > Sniffing & Social Engineering | - security controls including information assurance, information security, network segmentation, defense-in-depth, and security policies
| > Denial-of-Service & Session Hijacking | - access control mechanisms, data leakage, leak prevention, and data loss prevention
| > Evading IDS, Firewalls, and Honeypots | - preventing malware threats and social engineering
| > Hacking Web Servers & Hacking Web Applications | - common web application and server threats and hacking
| > Database Security & SQL Injection | - SQL injection and the role of hacking
| > Hacking Wireless Networks | - wireless and mobile hacking and prevention tools
| > Hacking Mobile Platforms |
| > IoT and OT Hacking |
| > Cloud Computing |
| > Cryptography |

Suitable job roles:
- Chief Information Officer (CIO)
- Chief Information Security Officer (CISO)
- Cybersecurity Officer / Cybersecurity Consultant

Mapping with professional certifications:
- EC-Council CEH (Certified Ethical Hacker)
- S-EHP (SECO-Institute's Ethical Hacking Practitioner)
- CompTIA Pentest+
- OSCE (Offensive Security Certified Expert)
- eCPTX (eLearnSecurity Certified Penetration Tester eXtreme)
- Mile2 C)PEH Certified Professional Ethical Hacker
- CPEH (GAQM Certified Professional Ethical Hacker)
EUCS08 - Cybersecurity Analyst

Competence Level: Advanced
The subject is proposed to be 5 ECTS.

Alternative names:
- Systems Security
- Enterprise Systems Security
- Information and Data Security
- Data Systems Security

<table>
<thead>
<tr>
<th>Subject contents and topics</th>
<th>Learning outcomes (competences)</th>
</tr>
</thead>
</table>
| > Threat Management
> Vulnerability Management
> Cyber Incident Response
> Security and Architecture Tool Sets
> Attack cycle
> The role of the analyst in cyber threat intelligence
> Attribution | The student is able to demonstrate the knowledge, skills and abilities of
- network architecture and reconnaissance principles
- select appropriate tools for network reconnaissance and vulnerability analysis
- threat identification and threat mitigation principles
- analyse network vulnerabilities with network reconnaissance and analysing tools
- security incidents investigation and monitoring principles
- present the results of network reconnaissance and vulnerability analysis in professional format

Suitable job roles:
- Cybersecurity Analyst
- Threat Intelligence Analyst
- Security Engineer
- Application Security Analyst
- Incident Response or Handler
- Compliance Analyst
- Threat Hunter

Mapping with professional certifications:
- CompTIA CySA+ (Cybersecurity Analyst)
- ECSA-Master (EC-Council Certified Security Analyst)
- SSCP (Systems Security Certified Practitioner)
- CPSA (CREST Practitioner Security Analyst)
- CESA (Lunarline Certified Expert Security Analyst)
- OPSE (OSSTMM Professional Security Expert)
- Cisco Certified CyberOps Professional certification (CBRCOR + CBRFIR)
EUCS09 - Cybersecurity for Artificial Intelligence (AI)

Competence Level: Advanced

The course is proposed to be 10 ECTS.

Alternative names:
- Smart cybersecurity / Intelligence cybersecurity
- Use of AI in cybersecurity
- Cybersecurity and the role of AI

<table>
<thead>
<tr>
<th>Subject contents and topics</th>
<th>Learning outcomes (competences)</th>
</tr>
</thead>
<tbody>
<tr>
<td>> Data science and security concept</td>
<td></td>
</tr>
<tr>
<td>> Knowledge Representation</td>
<td></td>
</tr>
<tr>
<td>> Knowledge Based Systems</td>
<td></td>
</tr>
<tr>
<td>> Expert Systems</td>
<td></td>
</tr>
<tr>
<td>> Types of machine learning</td>
<td></td>
</tr>
<tr>
<td>> Data and its pre-processing</td>
<td></td>
</tr>
<tr>
<td>> Types of Learning</td>
<td></td>
</tr>
<tr>
<td>> Tools and Technologies</td>
<td></td>
</tr>
<tr>
<td>> Regression</td>
<td></td>
</tr>
<tr>
<td>> Decision Trees</td>
<td></td>
</tr>
<tr>
<td>> Naïve Bayes</td>
<td></td>
</tr>
<tr>
<td>> Support Vector Machines</td>
<td></td>
</tr>
<tr>
<td>> Clustering</td>
<td></td>
</tr>
<tr>
<td>> Neural Networks</td>
<td></td>
</tr>
<tr>
<td>> Neural Coding</td>
<td></td>
</tr>
<tr>
<td>> Reinforcement Learning</td>
<td></td>
</tr>
<tr>
<td>> Big Data Processing</td>
<td></td>
</tr>
<tr>
<td>> Deep Learning</td>
<td></td>
</tr>
<tr>
<td>> Tools and Technologies</td>
<td></td>
</tr>
<tr>
<td>> Convolutional Neural Networks</td>
<td></td>
</tr>
<tr>
<td>> Recurring and Recursive Neural Networks</td>
<td></td>
</tr>
<tr>
<td>> Distributed AI / Multi-Agent Systems</td>
<td></td>
</tr>
<tr>
<td>> Federated Learning</td>
<td></td>
</tr>
<tr>
<td>> Ensemble Methods</td>
<td></td>
</tr>
</tbody>
</table>

The student is able to:
- become aware, understand and apply different techniques for data science, data pre-processing steps and its security implication.
- become aware, understand and apply different machine learning techniques: supervised, unsupervised and reinforcement learning.
- understand and apply different techniques for ingestion, storage and processing of big data
- understand and apply different deep learning techniques
- understand and apply federated learning and distributed AI
- know and understand a real problem of medium or high complexity and analysing, investigating, designing, implementing, experimenting, reviewing, testing, synthesising, and evaluating in order to solve this problem using the methods presented in the course.
- understand different types of problems such as events correlation, impact propagation, intelligent SIEM

Types of Problems:
- intrusion detection
- detection of inappropriate web and email contents
- modelling the behaviours of devices, users, and network to learn specific patterns and detect anomalous behaviours
- user and entity behaviour analytics

Suitable job roles:
- AI Cybersecurity Expert
- Threat Intelligence Analyst
- Data Security Scientist/Expert

Mapping with professional certifications
- Cybersecurity Artificial Intelligence (CS_AI) Certificate Program: Higher Education Institutes (HEIs)
- ISACA CET—Certified in Emerging Technology Certification

EUCS10 – Machine Learning Security
Competence Level: Advanced

The course is proposed to be 5 ECTS.

Alternative names:
- Protecting AI systems
- Safe and Secure Machine Learning
- Trustworthy AI
- AI security

<table>
<thead>
<tr>
<th>Subject contents and topics</th>
<th>Learning outcomes (competences)</th>
</tr>
</thead>
<tbody>
<tr>
<td>> Artificial Intelligence threats</td>
<td>The student is able to</td>
</tr>
<tr>
<td>> AI risks identification</td>
<td>- understand and identify the threats and risks of using AI for CS</td>
</tr>
<tr>
<td>> Adversarial Learning</td>
<td>- defend against adversarial learning</td>
</tr>
<tr>
<td>> Generative Neural Networks</td>
<td>- design adversarial-aware AI systems</td>
</tr>
<tr>
<td>> Explainable AI</td>
<td>- use explainable AI techniques</td>
</tr>
<tr>
<td>> Explainable vs black-box models</td>
<td>- become aware of the strategies to use to verify AI</td>
</tr>
<tr>
<td>> Verification and Validation of AI</td>
<td>and evaluate the safety of its usage</td>
</tr>
</tbody>
</table>

Suitable job roles:
- Cybersecurity Analyst
- Threat Intelligence Analyst
- Security Engineer
- Application Security Analyst

Mapping with professional certifications
- Cybersecurity Machine Learning Certificate Program: Higher Education Institutes (HEIs)
- ISACA CET—Certified in Emerging Technology Certification
EUCS11- Cybersecurity for Emerging Cloud Technologies

Competence Level: Advanced

The course is proposed to be 5 ECTS.

Alternative names:
- Cloud Computing
- Cloud Auditing

<table>
<thead>
<tr>
<th>Subject contents and topics</th>
<th>Learning outcomes (competences)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud concepts, design and development</td>
<td>The student is able to</td>
</tr>
<tr>
<td>Network and cloud attack techniques</td>
<td>- understand and explain cloud concepts, architecture and design</td>
</tr>
<tr>
<td>Defense systems: Anti-Malware, IPS, SandBox and Debugging</td>
<td>- understand and apply practices of operating systems, servers, clouds and relevant infrastructures (e.g., languages, software and emerging technologies, programming)</td>
</tr>
<tr>
<td>Cryptography and steganography</td>
<td>- apply hands-on coding and scripting and programming skills (e.g., languages, software and emerging technologies, programming and other)</td>
</tr>
<tr>
<td>Risk analysis and management</td>
<td>- apply the cloud platform, Infrastructure, data, and application security</td>
</tr>
<tr>
<td>Main threats: traditional attacks, ransomware, DOS and DDOS, Advanced Persistent Threats (APT)</td>
<td>- understand and apply regulations, legal, risk and compliance standards/methodologies/tools/guidelines/best practices relevant to cloud computing</td>
</tr>
<tr>
<td>Web Application Attacks: Cross Site Scripting (XSS)</td>
<td></td>
</tr>
<tr>
<td>Techniques, tools and technologies for Cloud security (including cloud data and application security using the OWASP model)</td>
<td></td>
</tr>
<tr>
<td>Cloud Computing Privacy Issues</td>
<td></td>
</tr>
</tbody>
</table>

Suitable job roles:
- Cybersecurity Analyst
- Threat Intelligence Analyst
- Security Engineer
- Application Security Analyst
- Risk Manager
- Cloud Computing Expert
- Cloud Auditor

Mapping with professional certifications
- ISC² Certified Cloud Security Professional (CCSP)
- CompTIA Cloud+
- CompTIA Cybersecurity Analyst (CySA+)
EUCS12- Cybersecurity for the Digital Transformation

Competence Level: Advanced
The course is proposed to be 5 ECTS.

Alternative names:
- Digital Transformation in Modern Era
- Digital Transformation Cybersecurity

Subject contents and topics

<table>
<thead>
<tr>
<th>Subject contents and topics</th>
<th>Learning outcomes (competences)</th>
</tr>
</thead>
<tbody>
<tr>
<td>> Digital transformation concepts: technology evaluation, societal-business-rectulatory complexity, sophisticated cyber-threats and attacks, and resource management</td>
<td>The student is able to</td>
</tr>
<tr>
<td>> Onlife Manifesto: being human in a hyperconnected era</td>
<td>- understand and explain digital transformation concepts and foundation including benefits, challenges and opportunities.</td>
</tr>
<tr>
<td>> Foundation and Revolution of AI, Machine Learning and IoT</td>
<td>- understand and explain the impact of digital era and information and communication technologies (ICTs) on the human condition. How it demands the need of digital transformation</td>
</tr>
<tr>
<td>> Foundation and revolution of Cloud, Blockchain and Big Data</td>
<td>- explain and discuss digital transformation and its associated practices, models and technologies</td>
</tr>
<tr>
<td>> Foundation and revolution of Cybersecurity and Emerging Cutting-Edge technologies</td>
<td>- application practices of contemporary technologies associated with Digital Transformation</td>
</tr>
<tr>
<td>> Digital transformation in practice and their impacts in society, business, communities and governments</td>
<td>- cultivate organisational thinking of cyber secure digital transformation domains, digital capabilities and adoption considerations</td>
</tr>
<tr>
<td>> Market trends on digital transformation and impact on cybersecurity</td>
<td>- foster the adoption of Digital Transformation practices and technologies to business process improvements and optimization</td>
</tr>
<tr>
<td>> Leadership and management practices in digital transformation</td>
<td>- ensure the organisation growth and competitiveness in digital era with next generation cybersecurity</td>
</tr>
</tbody>
</table>

Suitable job roles:
- Digital Transformation Evangelist
- Digital Transformation Innovator
- Digital Transformation Expert
- Digital Transformation Leader

Mapping with professional certifications
- None

European Cybersecurity Education & Professional Training: Minimum Reference Model Curricula
EUROPEAN CYBERSECURITY EDUCATION & PROFESSIONAL TRAINING: MINIMUM REFERENCE MODEL CURRICULUM

EUCS13- CYBERSECURITY AND DIGITAL ERA LEADERSHIP

COMPETENCE LEVEL: ADVANCED

The course is proposed to be 5 ECTS.

ALTERNATIVE NAMES:
- Leadership in the Cyber Secure Digital Era
- Digital Era Leader
- Next Generation European Leadership
- Chief Innovation Officer / Leader

SUBJECT CONTENTS AND TOPICS	LEARNING OUTCOMES (COMPETENCES)
>Online Manifesto: being human in a hyperconnected era
>Leading the organisation in the disruptive digital era: Different leadership styles
>Leadership and management practices in digital and innovation era: innovation, growth, inclusion, collaboration and modern business strategy: Digital competences
>Creative, playful and transformational leadership and modern business strategy: Human-centric innovation
>Digital readiness in modern era and innovation organisations
>Effective communication and presenting in digital era
>Managing global and diverse teams with impactful co-creation, co-innovation and social responsibilities
>Leading from the front for the cyber secure practices of innovation, social media, cutting-edge technologies and tools

The student is able to:
- understand and explain the impact of digital era and information and communication technologies (ICTs) on the human condition. How it demands the need of digital era leadership
- understand and explain generational leadership styles, digital competences and human-centric innovation thinking
- rethink the leadership model for digital era with innovation, growth, inclusion, and collaboration practices
- support and help next generation digital leaders to perform their best with new venture, innovation, transformation and lead without titles
- cultivate innovation, experimenting, entrepreneur spirit and risk taking for new service innovations as part of one-step ahead business strategies
- foster initiative, creativity, curiosity, growth mindset, collaboration, grit, social responsibility and next generation leadership
- ensure accountability, credits and progress for the diverse teams
- ensure the organisation’s growth and competitiveness in the digital era

SUITABLE JOB ROLES:
- C-Suit Leaders
- CEO and MD of Innovative Firms
- Global Advisory Board Member
- Board Member for Innovative Firms

MAPPING WITH PROFESSIONAL CERTIFICATIONS
- INSEAD Digital Ear Leadership Programme
EUCS14 - Ethical Hacking and Offensive Cybersecurity

Competence Level: Advanced

The subject is proposed to be 5 ECTS.

Alternative names:
- Ethical Hacking
- Offensive Cybersecurity
- Pen testing

<table>
<thead>
<tr>
<th>Subject contents and topics</th>
<th>Learning outcomes (competences)</th>
</tr>
</thead>
<tbody>
<tr>
<td>> Professional and Ethical Hacking skills and responsibility</td>
<td>The student is able to take sole responsibility for working as a member ethical hacker team and participate and act ethically as a member of team, community and working-life partners.</td>
</tr>
<tr>
<td>> Penetration testing process and tools</td>
<td>- apply hacking techniques information gathering techniques targeted ICT systems and services utilising the tools and techniques for penetration testing process.</td>
</tr>
<tr>
<td>> Passive information gathering</td>
<td>- practice SQL injections, XSS exploits and tunneling techniques on web applications and servers.</td>
</tr>
<tr>
<td>> Active information gathering</td>
<td>- manifest cybersecurity offensive and ethical hacking professional practices.</td>
</tr>
<tr>
<td>> Vulnerability scanning and finding exploits</td>
<td>- apply practitioner skills in the community.</td>
</tr>
<tr>
<td>> Exploits and hacking attacks</td>
<td></td>
</tr>
<tr>
<td>> Client and server-side attacks</td>
<td></td>
</tr>
<tr>
<td>> Fixing exploits and securing</td>
<td></td>
</tr>
<tr>
<td>> Ethical hacking process documentations and suggestions</td>
<td></td>
</tr>
<tr>
<td>> Ethical hacking, social responsibilities and secure society</td>
<td></td>
</tr>
</tbody>
</table>

Suitable job roles:
- Ethical Hacker
- Penetration Tester
- Technical Vulnerability Analyst / Assessor
- Offensive Cybersecurity Practitioner
- Offensive Cybersecurity Expert

Mapping with professional certifications:
- CompTIA Pentest+
- EC-Council CEH (Certified Ethical Hacker)
- PEH Certified Professional Ethical Hacker
- OSCE (Offensive Security Certified Expert)
- S-EHP (SECO-Institute’s Ethical Hacking Practitioner)
EUCS15 – Cybersecurity and Cyber Ranges in Practice

Competence Level: Advanced
The subject is proposed to be 5 ECTS.

Alternative names:
- Cyber Ranges and Hackathons
- Offensive Cybersecurity
- Ethical Hacking

Subject contents and topics

<table>
<thead>
<tr>
<th>Subject contents and topics</th>
<th>Learning outcomes (competences)</th>
</tr>
</thead>
</table>
| > Professional and Ethical skills and responsibility
> Teamwork participation and contribution
> Collaboration and cooperation with working-life partners
> Ethical Hacking and Hands-on Skills including reconnaissance, network pen testing, access control, software, database and capture the flag.
> Project documentation and presentations
> Exercises and scenarios for simulations, virtual or cyber range environments | The student is able to
- take sole responsibility for working as a member cybersecurity analyst team (project target varies including research, innovation, business, cyber ranges, cyber drill or cyber defense projects)
- participate and act ethically as a member of team, community and working-life partners
- select appropriate tools and strategies for network reconnaissance and vulnerability analysis project in real exercise or company environment
- present the results of network reconnaissance and vulnerability analysis in a professional format
- analyse critically the outcome of the project
- manifest cybersecurity professional practices and apply practitioner skills in the community |

Suitable job roles:
- Ethical Hacker
- Penetration Tester
- Offensive Cybersecurity Practitioner
- Cybersecurity Trainer
- Cyber Ranges Expert

Mapping with professional certifications:

- S-EHP (SECO-Institute’s Ethical Hacking Practitioner)
- CompTIA Pentest+
- OSCE (Offensive Security Certified Expert)
- eCPTX (eLearnSecurity Certified Penetration Tester eXtreme)
- EC-Council CEH (Certified Ethical Hacker)
- PEH Certified Professional Ethical Hacker
EUCS16 - Cybersecurity Forensics / Threat Intelligence

Competence Level: Advanced

The course is proposed to be 5 ECTS.

Alternative names:
- Cyber Threat Intelligence
- Digital Forensics

<table>
<thead>
<tr>
<th>Subject contents and topics</th>
<th>Learning outcomes (competences)</th>
</tr>
</thead>
<tbody>
<tr>
<td>> Digital forensics investigations</td>
<td>The student is able to</td>
</tr>
<tr>
<td>> Legal aspects and analysis methodologies</td>
<td>- work ethically and independently; not influenced and biased by internal or external actors</td>
</tr>
<tr>
<td>> "Offensive" computer security</td>
<td>- explain and present digital evidence in a simple, straightforward and easy to understand way for non-technical people</td>
</tr>
<tr>
<td>> Explore techniques and technologies for image analysis and processing</td>
<td>- develop detailed investigation reports</td>
</tr>
<tr>
<td>> Computer networks, protocols and analysis techniques</td>
<td>- carry out activities as an expert (independently, ethically, impartially, conscientiously, competently and in a trustworthy manner)</td>
</tr>
<tr>
<td>> Network and software hacking techniques</td>
<td>- identify the limits of their expertise and act accordingly (e.g. identifying and comparing persons and objects visible on digital images, interpreting audio fragments, photogrammetry)</td>
</tr>
<tr>
<td>> Data analysis and recovery</td>
<td>- understand criminal law, and criminal investigation</td>
</tr>
<tr>
<td>> Virtualisation and its implications for forensic analysis</td>
<td></td>
</tr>
<tr>
<td>> Forensic analysis on mobile devices and in the IoT domain</td>
<td></td>
</tr>
<tr>
<td>> Risk management</td>
<td></td>
</tr>
</tbody>
</table>

Suitable job roles:
- Digital Forensics Investigator
- Digital Forensics Analyst / Examiner
- Cyber Forensics Analyst / Expert
- Computer Forensics Specialist / Investigators / Technician / Examiner
- Cyber Threat Intelligence Expert

Mapping with professional certifications
- GIAC Certified Forensic Examiner (GCFE)
- GIAC Cyber Threat Intelligence (GCTI)
- CompTIA PenTest+
- eCPTX (eLearnSecurity Certified Penetration Tester eXtreme)
- EC-Council CEH (Certified Ethical Hacker)
EUCS17 – Internet of Things (IoT) Cybersecurity Practitioner

Competence Level: Advanced

The course is proposed to be 5 ECTS.

Alternative names:
- Internet of Things (IoT) Security
- Cybersecurity of IoT

<table>
<thead>
<tr>
<th>Subject contents and topics</th>
<th>Learning outcomes (competences)</th>
</tr>
</thead>
<tbody>
<tr>
<td>> Internet of Things and pervasive technology concepts</td>
<td>The student is able to</td>
</tr>
<tr>
<td>> IoT Lifecycle: Conceptual Phase to Retirement Phase</td>
<td>- explain and present concepts of embedded devices, wearable gadgets, pervasive technology and the Industrial Internet of Things</td>
</tr>
<tr>
<td>> Design and implement privacy-aware & secure IoT devices: Security by Design</td>
<td>- explain and present IoT lifecycle with examples including conceptual, development, production, utilisation, support, and retirement phases</td>
</tr>
<tr>
<td>> Threats and risks to IoT devices and lifecycle</td>
<td>- abilities to create relevant and risk-based security requirements for IoT products and related services using security by design principle</td>
</tr>
<tr>
<td>> Create secure, manageable, and compliant IoT products</td>
<td>- carry out security good practices for full IoT lifecycle considering actors, processes and technologies</td>
</tr>
<tr>
<td>> Release and deploy verified IoT products</td>
<td>- understand IoT compliance, regulatory and legal framework</td>
</tr>
<tr>
<td>> Secure IoT production environment and products</td>
<td></td>
</tr>
<tr>
<td>> Internet of Things compliance, regulatory and legal framework</td>
<td></td>
</tr>
</tbody>
</table>

Suitable job roles:
- IoT Cybersecurity Expert

Mapping with professional certifications
- CTIA IoT Cybersecurity Certification
- Eurosmart IoT Certification Scheme
6. Key takeaways from the Minimum Reference Curriculum

In reviewing the modules in this paper and considering ECSO’s 2020 paper on cyber ranges, a clear takeaway is that we can consider the use of cyber ranges explicitly as a regular hands-on learning method for all the skills development modules/subjects of the minimum reference model curriculum. Simulation labs are already used for teaching but outside or without a cyber range, running teaching labs is not a sustainable learning method nor a fully accessible one (especially considering the campus access restrictions brought on by COVID-19). ECSO WG5 therefore encourages a wider adoption and use of cyber range-based services by learners, training providers, and employers alike. This will allow a shift from the still elite platform/technology perception to more accessible educational environments, in line with other available learning methods in cybersecurity such as taught education, self-learning and continuous professional development.

ECSO and its members foresee the benefits and contribution of this report towards European cybersecurity capacity building efforts and will update the report based on inputs from the wider cybersecurity community and in line with complementary frameworks such as ENISA’s upcoming Cybersecurity Skills Framework.
Annex

Example: CISO profile
Sample usage: Case of possible usage of combining ECSO paper with EU nations’ perspective.

Following work is Based on the Dutch CISO profile [17] mapped to e-CF [6] and integrating ECSO paper elements. The combination creates a working-life case of cybersecurity professional profiles and curricula.

<table>
<thead>
<tr>
<th>Profile title</th>
<th>CORPORATE SECURITY OFFICER (CISO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary statement</td>
<td>Defines the information security strategy and organises and manages the organisation’s information security in line with the organisation’s needs and risk appetite.</td>
</tr>
<tr>
<td>Mission</td>
<td>Defines the organisation’s information security strategy, based on a risk management approach and anticipating the information security threat landscape, trends and business needs. Sets up the information security organisation and determines and assigns necessary resources. Initiates and coordinates information security deployment and integration throughout the organisation. Ensures an appropriate level of information security and information security behaviour based on the organisation’s needs and risk appetite. Is recognised as the information security strategy expert by internal and external stakeholders.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deliverables</th>
<th>Accountable</th>
<th>Responsible</th>
<th>Contributor</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Information security strategy</td>
<td>• Information security strategy</td>
<td>• Risk management strategy</td>
<td></td>
</tr>
<tr>
<td>• Information security organisation and expertise</td>
<td>• Corporate information security activities and projects</td>
<td>• Information systems governance</td>
<td></td>
</tr>
<tr>
<td>• Business continuity organisation</td>
<td>• Monitoring the relevant risks for the organisation</td>
<td>• Service Level Agreements</td>
<td></td>
</tr>
<tr>
<td>• Adapt information security to other security domains</td>
<td>• Monitoring compliance with policy, legislation and regulation</td>
<td>• Information security architecture</td>
<td></td>
</tr>
<tr>
<td>• Compliance with information security requirements and architecture</td>
<td>• Coordinated response after major information security or ICT incidents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Information security awareness across the organisation</td>
<td>• Corporate information security policies, standards, methods and techniques</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Main tasks

- Define the organisation’s strategy for information security
- Organise information security and the necessary expertise
- Ensure adaptation of information security to other security domains, including privacy protection, physical security and continuity management
- Establish a business continuity organisation
- Coordinate the response to serious information security or ICT incidents
- Provide an information security project portfolio
- Initiate and coordinate corporate information security activities and projects
- Provide corporate information security policies, standards, methods and techniques
- Monitor and ensure the quality of information risk analyses, security designs and solutions
- Monitor and ensure compliance with information security requirements and architecture and consistent application of Security-by-Design and Privacy-by Design
- Monitor and ensure information security awareness throughout the organisation
- Monitor the relevant risks for the organisation
- Ensure the organisation’s risk readiness for emerging information security and ICT risks
- Monitor and ensure the quality of information security assessments, tests, reviews and audits
- Monitor the extent to which the organisation complies with information security policy, legislation and regulations on the basis of assessments, tests, reviews and audits
- Inform senior general management on the status of information security and incidents, and present improvement proposals

<table>
<thead>
<tr>
<th>e-Competences (from e-CF)</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1. Information Security Strategy Development</td>
<td>4</td>
</tr>
<tr>
<td>E.3. Risk Management</td>
<td>3</td>
</tr>
<tr>
<td>E.4. Relationship Management</td>
<td>3</td>
</tr>
<tr>
<td>E.8. Information Security Management</td>
<td>4</td>
</tr>
<tr>
<td>G.1. Leadership</td>
<td>3</td>
</tr>
</tbody>
</table>
European Cybersecurity Education & Professional Training: Minimum Reference Model Curricula

<table>
<thead>
<tr>
<th>General competences</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.3. Communication and persuasion</td>
<td>Level 3</td>
</tr>
<tr>
<td>G.5 Organisational sensitivity</td>
<td>Level 3</td>
</tr>
<tr>
<td>G.6. Management</td>
<td>Level 3</td>
</tr>
<tr>
<td>G.7 Analytical skills</td>
<td>Level 4</td>
</tr>
<tr>
<td>G.8 Integrity</td>
<td>Level 3</td>
</tr>
</tbody>
</table>

Education and experience
- A completed relevant Master study\(^7\) or equivalent level of knowledge and skills
- Five years’ work experience in an information security position
- Five years’ work experience in a management position

KPI
An appropriate level of information security and information security awareness based on the organisation’s needs and risk appetite.

In the above overview, different competency levels are presented, as used in the eCF framework. Below the explanation is given for the different levels, for both knowledge and skill level.

<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Exceptionally comprehensive and detailed knowledge and understanding of the subject</td>
<td>Guiding others who carry out the activity in a very complex context</td>
</tr>
<tr>
<td>4</td>
<td>Very extensive and detailed knowledge and understanding of the subject</td>
<td>Carrying out the activity in a very complex context</td>
</tr>
<tr>
<td>3</td>
<td>Knowledge and understanding of the subject in detail</td>
<td>Carrying out the activity in a difficult context</td>
</tr>
<tr>
<td>2</td>
<td>Knowledge and understanding of all major aspects of the subject</td>
<td>Carrying out the activity in a simple context</td>
</tr>
<tr>
<td>1</td>
<td>Basic knowledge and understanding of the subject</td>
<td>Carrying out the activity in a simple context under guidance</td>
</tr>
</tbody>
</table>

This provides the required levels of knowledge and skill. It is not yet possible to determine what this entails and how we transfer this knowledge. For this, knowledge and skill statements have been set up. These statements are still high level, but already more detailed. These learning outcomes enable training providers (both education institutes and commercial training providers) to set up relevant courses. The statements are also robust and relatively independent of time, as they don’t mention specific models and technologies.

As an example, for years the relevant privacy EU legislation was provided by the EU Data Protection Directive (Directive 95/46). In recent years, it has been replaced by the General Data Protection Regulation. The statement on knowledge of relevant legislation does not need the change, the actual training however needs to be updated. The actual training can be based upon relevant Bodies of Knowledge like CyBOK.

One example is provided below, for both the knowledge and the skill part. The example is provided for D1: Information Security Strategy Management.

\(^7\) A Master study in economic, exact, technical or human sciences domain.
<table>
<thead>
<tr>
<th>Knowledge and skill (e-CF)</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has knowledge of / is familiar with</td>
<td>Has knowledge of and insight in</td>
</tr>
<tr>
<td>K0 the principles and models for organization and strategy development when relevant for information security.</td>
<td>CISO</td>
</tr>
<tr>
<td>D1.K0.1 The most important principles and models from organization science, their characteristics and applications.</td>
<td>4</td>
</tr>
<tr>
<td>D1.K0.2 The most important principles and models for strategy, governance and alignment, their characteristics and applications.</td>
<td>3</td>
</tr>
<tr>
<td>D1.K0.3 The most important models, methods and techniques for financial systems, their characteristics and applications.</td>
<td>4</td>
</tr>
<tr>
<td>D1.K0.4 The most important principles and models for information security, their characteristics and applications</td>
<td>4</td>
</tr>
<tr>
<td>D1.K0.5 The principles and advantages / disadvantages of standardization</td>
<td>4</td>
</tr>
<tr>
<td>K1 potential and opportunities of relevant norms and ‘best practices’.</td>
<td></td>
</tr>
<tr>
<td>D1.K1.1 potential and opportunities of relevant norms and ‘best practices’</td>
<td>4</td>
</tr>
<tr>
<td>D1.K1.2 Relevant laws and regulations with respect to information security.</td>
<td>4</td>
</tr>
<tr>
<td>Is capable of</td>
<td>Is Capable of</td>
</tr>
<tr>
<td>S1 Development and critical analysis of the company strategy with respect to information security.</td>
<td></td>
</tr>
<tr>
<td>D1.S1.1 Creating a vision on information security for a specific organization.</td>
<td>4</td>
</tr>
<tr>
<td>D1.S1.2 Creating a strategy on information security for a specific organization.</td>
<td>4</td>
</tr>
<tr>
<td>D1.S1.3 Reading and judging of a strategy for information security.</td>
<td>4</td>
</tr>
<tr>
<td>D1.S1.4 Presenting and explaining of a strategy for information security.</td>
<td>4</td>
</tr>
<tr>
<td>D1.S1.5 Creating a business case for parts of information security</td>
<td>4</td>
</tr>
</tbody>
</table>
References

[15] Cyber Education Project (CEP) : http://cybereducationproject.org/about/
European Cybersecurity Education & Professional Training: Minimum Reference Model Curricula

discipline. In Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education (pp. 36-54).

ACKNOWLEDGEMENT

The European Cybersecurity Organisation’s (ECSO) WG5 aims to contribute towards a cybersecurity capability and capacity-building effort for a cyber resilient next generation (NextGen) digital Europe, through increased education, professional training, skills development, as well as actions on awareness-raising, expertise-building and gender inclusiveness. This development work has been conducted with partners from across Europe including industry, working-life practitioners, academia, researchers and scholars. Overall, ECSO has around 270 EU members, with at least 150 member organisations and 300 individual experts contributing to WG5.

The following is a special acknowledgement of the active contributions in various capacities from ECSO WG5 members.

EXPERT CONTRIBUTIONS:
SWG 5.2 co-chairs: Giorgio Giacinto (CINI, Italy), Marcello Hinxman-Allegri (Silensec, Italy), Kari Rannikko (CybExer, Estonia)
WG5 colleagues: Dr. Tero Kokkonen (JAMK, Finland), Prof. Olaf Maennel (TTU, Estonia), Isabel Praça (ISEP, Portugal), Carmel Somers (ICT Skillnet, Ireland), Jan Wessels (Rabobank, Netherlands), Donato Malerba (UNIBA, Italy) and WG5 members

EDITOR AND PRIMARY AUTHORS
Paresh Rathod, Co-chair ECSO WG5, Brussels and Laurea University of Applied Sciences, Finland

SENIOR POLICY MANAGER AND FACILITATOR:
Nina Olesen (ECSO, Brussels). @ ECSO WG5 has the right to update, edit or delete the paper and any of its contents as the field of cybersecurity is evolving all the time.